Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/59253
Tipo: Artigo de Periódico
Título : Operational Bayesian GLS regression for regional hydrologic analyses
Título en inglés: Operational Bayesian GLS regression for regional hydrologic analyses
Autor : Reis Júnior, Dirceu S.
Veilleux, Andrea G.
Lamontagn, Jonathan R.
Stedinger, Jery R.
Martins, Eduardo Sávio Passos Rodrigues
Palabras clave : Hidrologia;Água;Pesquisa
Fecha de publicación : 2020
Editorial : Water Resources Research
Citación : REIS JÚNIOR, Direceu S.; VEILLEUX, Andrea G.; LAMONTAGNE, Jonathan R.; STEDINGER, Jery R.; MARTINS, Eduardo Sávio Passos Rodrigues. Operational Bayesian GLS regression for regional hydrologic analyses. Water Resources Research, United States, v. 56, p. 1-35, 2020.
Abstract: This paper develops the quasi analytic Bayesian analysis of the generalized least squares (GLS)(BGLS) model introduced by Reis et al. (2005, https://doi.org/10.1029/2004WR003445) into an operationaland statistically comprehensive GLS regional hydrologic regression methodology to estimate oodquantiles, regional shape parameters, low ows, and other statistics with spatially correlated ow records.New GLS regression diagnostic statistics include a Bayesian plausibility value, pseudo adjusted R2,pseudo analysis of variance table, and two diagnostic error variance ratios. Traditional leverage andinuence are extended to identify rogue observations, address lack of t, and support gauge network designand regionofinuence regression. Formulas are derived for the Bayesian computation of estimators,standard errors, and diagnostic statistics. The use of BGLS and the new diagnostic statistics are illustratedwith a regional logspace skew regression analysis for the Piedmont region in the Southeastern U.S. Acomparison of ordinary, weighted, and GLS analyses documents the advantages of the Bayesian estimatorover the method ofmoment estimator of model error variance introduced by Stedinger and Tasker (1985,https://doi.org/10.1029/WR021i009p01421). Of the three types of analyses, only GLS considers thecovariance among concurrent ows. The example demonstrates that GLS regional skewness models can behighly accurate when correctly analyzed: The BGLS average variance of prediction is 0.090 for SouthCarolina (92 stations), whereas a traditional ordinary least squares analysis published by the U.S.Geological Survey yielded 0.193 (Feaster & Tasker, 2002, https://doi.org/10.3133/wri024140). BGLSprovides a statistical valid framework for the rigorous analysis of spatially correlated hydrologic data,allowing for the estimation of parameters and their actual precision and computation of several diagnosticstatistics, as well as correctly attributing variability to the three key sources: time sampling error, modelerror, and signal
URI : http://www.repositorio.ufc.br/handle/riufc/59253
ISSN : 1944-7973
Aparece en las colecciones: LABOMAR - Artigos publicados em revistas científicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2020_art_dsreisjunior.pdf1,28 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.