Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/59253
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorReis Júnior, Dirceu S.-
dc.contributor.authorVeilleux, Andrea G.-
dc.contributor.authorLamontagn, Jonathan R.-
dc.contributor.authorStedinger, Jery R.-
dc.contributor.authorMartins, Eduardo Sávio Passos Rodrigues-
dc.date.accessioned2021-06-29T12:33:21Z-
dc.date.available2021-06-29T12:33:21Z-
dc.date.issued2020-
dc.identifier.citationREIS JÚNIOR, Direceu S.; VEILLEUX, Andrea G.; LAMONTAGNE, Jonathan R.; STEDINGER, Jery R.; MARTINS, Eduardo Sávio Passos Rodrigues. Operational Bayesian GLS regression for regional hydrologic analyses. Water Resources Research, United States, v. 56, p. 1-35, 2020.pt_BR
dc.identifier.issn1944-7973-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/59253-
dc.description.abstractThis paper develops the quasi analytic Bayesian analysis of the generalized least squares (GLS)(BGLS) model introduced by Reis et al. (2005, https://doi.org/10.1029/2004WR003445) into an operationaland statistically comprehensive GLS regional hydrologic regression methodology to estimate oodquantiles, regional shape parameters, low ows, and other statistics with spatially correlated ow records.New GLS regression diagnostic statistics include a Bayesian plausibility value, pseudo adjusted R2,pseudo analysis of variance table, and two diagnostic error variance ratios. Traditional leverage andinuence are extended to identify rogue observations, address lack of t, and support gauge network designand regionofinuence regression. Formulas are derived for the Bayesian computation of estimators,standard errors, and diagnostic statistics. The use of BGLS and the new diagnostic statistics are illustratedwith a regional logspace skew regression analysis for the Piedmont region in the Southeastern U.S. Acomparison of ordinary, weighted, and GLS analyses documents the advantages of the Bayesian estimatorover the method ofmoment estimator of model error variance introduced by Stedinger and Tasker (1985,https://doi.org/10.1029/WR021i009p01421). Of the three types of analyses, only GLS considers thecovariance among concurrent ows. The example demonstrates that GLS regional skewness models can behighly accurate when correctly analyzed: The BGLS average variance of prediction is 0.090 for SouthCarolina (92 stations), whereas a traditional ordinary least squares analysis published by the U.S.Geological Survey yielded 0.193 (Feaster & Tasker, 2002, https://doi.org/10.3133/wri024140). BGLSprovides a statistical valid framework for the rigorous analysis of spatially correlated hydrologic data,allowing for the estimation of parameters and their actual precision and computation of several diagnosticstatistics, as well as correctly attributing variability to the three key sources: time sampling error, modelerror, and signalpt_BR
dc.language.isoenpt_BR
dc.publisherWater Resources Researchpt_BR
dc.subjectHidrologiapt_BR
dc.subjectÁguapt_BR
dc.subjectPesquisapt_BR
dc.titleOperational Bayesian GLS regression for regional hydrologic analysespt_BR
dc.typeArtigo de Periódicopt_BR
dc.title.enOperational Bayesian GLS regression for regional hydrologic analysespt_BR
Aparece nas coleções:LABOMAR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_dsreisjunior.pdf1,28 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.