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Abstract This paper develops the quasi‐analytic Bayesian analysis of the generalized least squares (GLS)
(B‐GLS) model introduced by Reis et al. (2005, https://doi.org/10.1029/2004WR003445) into an operational
and statistically comprehensive GLS regional hydrologic regression methodology to estimate flood
quantiles, regional shape parameters, low flows, and other statistics with spatially correlated flow records.
New GLS regression diagnostic statistics include a Bayesian plausibility value, pseudo adjusted R2,
pseudo analysis of variance table, and two diagnostic error variance ratios. Traditional leverage and
influence are extended to identify rogue observations, address lack of fit, and support gauge network design
and region‐of‐influence regression. Formulas are derived for the Bayesian computation of estimators,
standard errors, and diagnostic statistics. The use of B‐GLS and the new diagnostic statistics are illustrated
with a regional log‐space skew regression analysis for the Piedmont region in the Southeastern U.S. A
comparison of ordinary, weighted, and GLS analyses documents the advantages of the Bayesian estimator
over the method‐of‐moment estimator of model error variance introduced by Stedinger and Tasker (1985,
https://doi.org/10.1029/WR021i009p01421). Of the three types of analyses, only GLS considers the
covariance among concurrent flows. The example demonstrates that GLS regional skewness models can be
highly accurate when correctly analyzed: The B‐GLS average variance of prediction is 0.090 for South
Carolina (92 stations), whereas a traditional ordinary least squares analysis published by the U.S.
Geological Survey yielded 0.193 (Feaster & Tasker, 2002, https://doi.org/10.3133/wri024140). B‐GLS
provides a statistical valid framework for the rigorous analysis of spatially correlated hydrologic data,
allowing for the estimation of parameters and their actual precision and computation of several diagnostic
statistics, as well as correctly attributing variability to the three key sources: time sampling error, model
error, and signal.

1. Introduction

Hydrologists often need to estimate hydrologic quantities for water resources planning and floodplain man-
agement, including rainfall intensity‐duration‐frequency (IDF) curves, annual mean flow, flood quantiles,
and low‐flow statistics. Because these estimates are commonly required at ungauged sites, they need to be
based upon gauged data collected elsewhere in the region. Even if the estimates are required at a gauged site,
the record length may not be long enough to provide estimates with (good) precision, in which case, the
combination of both regional and at‐site estimators, based on the precision of each, can provide a more pre-
cise estimate of the variable of interest (IACWD, 1982; Kuczera, 1982, 1983; Merz & Bloschl, 2008; Micevski
& Kuczera, 2009; Vicens et al., 1975).

Various strategies have been developed over the years to obtain regional estimates of hydrologic variables at
ungauged sites (Cunnane, 1988; GREHYS, 1996). The most popular approach, which is the one adopted
here, consists of building an empirical relationship between the hydrologic variable of interest and catch-
ment attributes at gauged sites using regional regression analysis (e.g., Thomas & Benson, 1970; Jennings
et al., 1994; Griffis & Stedinger, 2007b). The rationale is that catchment attributes would be closely related
to the patterns of many hydrological processes that occur in the basin (Merz & Bloschl, 2005).

An alternative to traditional regional regression methods is the region‐of‐influence (ROI) approach pro-
posed by Burn (1990a, 1990b). The ROI approach is not conceptually different from regional regression, in
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that it relies on the idea that gauges with some degree of similarity with the ungauged site of interest should
be employed to obtain a regional estimator. Similarity among sites is often measured in two different ways:
catchment attributes (e.g., slope, area, soil type, and land use) and basin proximity. The former assumes that
basins with similar characteristics should have similar hydrologic responses. However, because the scientific
understanding of how catchment characteristics influence water fluxes and storages in a basin is incomplete,
it is possible that an important basin attribute is not considered in the set of possible explanatory variables.
This justifies the use of spatial proximity, a simple and reasonable measure of similarity that assumes that
sites close to each other share similar hydrologic responses. The rationale behind this idea is based on the
assumption that hydrologic variables of interest vary smoothly over the region. Merz and Bloschl (2005)
and Eng, Milly, et al., (2007), Eng, Stedinger, et al., (2007) provide evidence that suggests that these similarity
measures are in fact complementary and show that a combination of both similarity measures results in a set
of gauged sites that provides more precise regional estimators for ungauged sites.

Regional estimators of hydrologic variables can also be obtained by Bayesian hierarchical models (Lima
et al., 2016; Renard, 2011; Viglione et al., 2013), which can be seen as a generalization of regression models.
Hierarchical models are structured in layers. The idea is to have one layer to model the at‐site data variability
and another layer to model the regional dependence. The hydrologic variable of interest observed in gauged
sites can be modeled as coming from a specific probability distribution with unknown parameters in one
layer, and the spatial variability of these parameters can then be modeled in another layer as linearly depen-
dent on some basin characteristics. This hierarchical approach differs from the traditional regression
approach because the whole estimation process is carried out simultaneously, allowing for possible uncer-
tainty interactions in the different layers; that may be an advantage over the traditional approach where
two independent steps are usually taken: (1) at‐site estimation of the variable of interest at all gauged sites
and its corresponding covariance matrix and (2) derivation of the regional regression model based on basin
characteristics. Then, perhaps (3), use the regional regression model as a prior in an at‐site analysis at
another time or a place not included in the original analysis (Martins & Stedinger, 2000).

Spatial interpolation techniques, such as canonical (Chokmani & Ouarda, 2004) and topological kriging
(Archfield et al., 2013; Skøien et al., 2006; Skøien & Bloschl, 2007), can provide regional estimators of hydro-
logic variables. Canonical kriging is applied to a two‐dimensional spatial representation of catchment and
climate attributes, which is often obtained by some multivariate statistical method, such as canonical corre-
lation analysis (Chokmani & Ouarda, 2004; Castiglioni et al., 2009) or principal component analysis. All
gauged and ungauged sites in the region can be represented in this two‐dimensional space (x, y). The
observed or estimated values of the hydrologic variable for each of the gauged sites are represented in a third
dimension (z), which are interpolated to obtain a regional estimator at ungauged sites. Topological kriging,
on the other hand, is an interpolation method that does not work through basin characteristics space but
across a river network taking into account the drainage areas and their proximity. Topological kriging can
be very much like region‐of‐influence regression in that the estimator for any point is a unique weighting
of values at nearby gauges. Topological and canonical krigings have been used to provide regional estimators
for flood quantiles (Skøien & Bloschl, 2007) and low‐flow statistics (Castiglioni et al., 2009, 2011).

Archfield et al. (2013) compare canonical and topological kriging against the traditional regression approach
for flood quantile estimation advance here. They concluded that topological kriging outperformed the tradi-
tional regression approach for the analyzed case and suggested that future studies should evaluate how the
different treatments of spatial correlation affect the performance of these quantile estimators. It is important
to note that their data set was not an example of strictly “ungauged” watersheds as one might expect from
the title and text. In a regional analysis for the same region, using many of the same flood records, Feaster
et al. (2009) and Veilleux (2011) note that many stream gauges were located on the same stream and corre-
sponded to very nearly the same watershed. Archfield et al.'s map shows howmany watersheds were nested.
Topological kriging is designed to take advantage of such spatially relationships, including “both the area
and nested nature of catchments” (Castiglioni et al., 2011). In Archfield et al. (2013), andmany other studies,
“ungauged” functionally meant there was not a gauge exactly at the stream cross section of interest, though
there could be gauges not far upstream or downstream or both. However, traditional regression has been for-
mulated to estimate hydrologic statistics at ungauged sites, meaning the watersheds of nearby sites do not
contain or are contained in the watershed of concern; thus, an accurate flow record for the site of concern
cannot be obtained by a modest adjustment of the record of flows at one or more nearby gauges. The
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Archfield et al. (2013) kriging results are what is to be expected when many gauges are located near each
other in a stream network; that relatively accurate flood quantile estimates were obtained in such cases is
an important result.

This paper represents advances in regional regression analyses for hydrologic variable estimation. For many
years, regional regression analyses used ordinary least squares (OLS) that considers the residual errors to be
homoscedastic and independently distributed (Riggs, 1973). However, the estimates of the variable of inter-
est at different gauged sites have different precision due to differences in record length (Tasker, 1980;
Kuczera, 1983) and possible differences in the precision of measurements and their variability (Tasker &
Stedinger, 1989).

A further complication is that concurrent hydrologic measurements in nearby or similar basins are generally
correlated so sampling errors may not be independent. To address this, Stedinger and Tasker (1985, 1986a,
1986b) developed a generalized least squares (GLS) framework, which considers both differences in preci-
sions and cross correlation among station estimators. They showed that a GLS analysis provides better esti-
mates of themodel parameters and themodel error variance (in terms of mean square errors) than does OLS.
See also Kroll and Stedinger 1998). The GLS procedure has been widely used in many hydrologic studies,
including the regionalization of flood quantiles (Tasker et al., 1986; Curtis, 1987; Landers & Wilson, 1991;
Rosbjerg & Madsen, 1995; GREHYS, 1996; Madsen & Rosbjerg, 1997; Robson & Reed, 1999; Kjeldsen &
Rosbjerg, 2002; Feaster & Tasker, 2002; Micevski & Kuczera, 2009), water quality parameters (Tasker &
Driver, 1988), low‐flow statistics (Ludwing & Tasker, 1993), extreme rainfall (Madsen et al., 2002), and the
design of hydrologic network (Moss & Tasker, 1991).

A weighted least squares (WLS) procedure, which considers only differences in record lengths, has been
used for the regionalization of the shape parameter (the skewness coefficient) for the State of Kansas
(Rasmussen & Perry, 2000) and the State of North Carolina (Pope et al., 2001). GLS has been used as a regres-
sion method in various studies using ROI techniques to regionalize flood quantiles (Tasker et al., 1996; Law
& Tasker, 2003, Eng, Milly, et al., 2007; Eng, Stedinger, et al., 2007; Haddad et al., 2011), L‐moments (Laio
et al., 2011), and parameters of a theoretical probability distribution, such as the log‐Pearson type 3
(Micevski et al., 2015). GLS has also been used as the basis of hydrologic network design (Medina, 1987;
Moss & Tasker, 1991; Soenksen et al., 1999; Tasker, 1986; Tasker & Stedinger, 1989). Kjeldsen and Jones
(2007) explore the spatial correlation of regression model error variance. Building on that work, Kjeldsen
and Jones (2009a, 2009b, 2010) developed a recursive GLS procedure, which takes into account the cross cor-
relation of the regression errors in hydrological regression models. This work may be particularly useful in
situations where only a few catchment descriptors are available and data from nearby stations are used to
improve regression models (Kjeldsen et al., 2014).

Reis et al. (2003, 2005) introduced a Bayesian approach to estimation for the model error variance of the GLS
regression analysis developed by Stedinger and Tasker (1985, 1986a, 1986b) for regional hydrologic analysis,
which they used to get the posterior distribution of estimated β parameters. A Bayesian analysis (Gelman
et al., 2004; Zellner, 1971) provides both an exact measure of precision of the model error variance that
the method‐of‐moments (MM) and maximum likelihood (ML) estimators lack and a more reasonable
description of the possible values of the model error variance in cases where the MM and ML model error
variance estimators are 0 or nearly 0 (examples in Madsen & Rosbjerg, 1997). Reis et al. (2005) show that
for cases in which the model error variance is small compared to the sampling error of the at‐site estimates,
which is often the case for regionalization of a shape parameter, the Bayesian posterior provides a more rea-
sonable description of the model error variance than either the MM or ML point estimator. The MM estima-
tor of the model error variance can be 0 if the observed variability in the data is explained by the sampling
error in the at‐site estimates, causing a distortion in the uncertainty of the regional estimate. Similarly, the
ML estimator of the model error variance may not be a good representation of the possible values of the
model error variance when its value is small or 0 because the likelihood function is often highly skewed; this
results in the mode being a less appropriate summary statistic than the center of mass. Sometimes, the mode
is at the origin, which results in anML estimate of 0. Qian et al. (2005) employ a similar Bayesian analysis for
a watershed loading model with three error terms representing independent observational errors, a struc-
tural correlated spatial dependency, and the impact of errors in one reach on the distribution of the esti-
mated loads downstream. Jeong et al. (2007) use Bayesian GLS (B‐GLS) for regionalization of the L‐CV
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and L‐skew for the generalized extreme value (GEV) distribution in Korea, while Haddad, Johnson, et al.
(2015) employ a B‐GLS framework to obtain regional regression equations to predict rainfall L‐moments
in ungauged sites in Australia. Seidou et al. (2006) use a parametric Bayesian methodology to estimate
GEV flood quantiles, Kim and Lee (2010) use a Bayesian OLS procedure to estimate low‐flow statistics in
Korea, and Haddad et al. (2013) and Egodawatta et al. (2014) employ OLS, WLS, and Bayesian WLS proce-
dures to estimate uncertainty in urban storm water quality models. More recently, the Australian
Government, in its updated Australian rainfall‐runoff guideline on regional peak flow estimation
(Rahman et al., 2016), recommended the use of Bayesian GLS for regional estimation of the parameters of
the log‐Pearson type 3 distribution. The decision was made based on comparative studies in Australia
(Haddad et al., 2012; Haddad & Rahman, 2012; Haddad, Rahman, & Ling, 2015). In the United States, the
U.S. Geological Survey (USGS) has recently conducted regional skew studies in several states employing
the Bayesian GLS framework suggested in Reis et al. (2005) and further developed in Gruber et al. (2007)
(Eash et al., 2013; Feaster et al., 2009; Gotvald et al., 2009; Gotvald et al., 2012; Lamontagne et al., 2012;
Mastin et al., 2016; Olson, 2014; Over et al., 2016; Parrett et al., 2011; Paretti et al., 2014; Southard &
Veilleux, 2014; Weaver et al., 2009; Wagner et al., 2016; Wood et al., 2016; Zarriello, 2017).

This paper starts with the Bayesian GLS model error variance estimator in Reis et al. (2005) and develops a
complete analysis framework including a range of new regression diagnostic statistics for both B‐WLS and
B‐GLS analyses. New diagnostic statistics include a description of significance, a pseudo R2, a pseudo analy-
sis of variance (ANOVA) table, and two error variance ratios (EVRs) that quantify the need forWLS and GLS
analyses. Leverage and influence statistics for GLS identify rogue observations, address lack of fit, and sup-
port gauge network design and ROI regression. This paper also compares the results of OLS, WLS, and GLS
analyses and the use of MM and Bayesian model error variance estimators to derive regional OLS/WLS/GLS
models of the shape parameter (skewness coefficient) of the log‐Pearson type III distribution for the
Piedmont region in the Southeastern U.S. The paper by Reis et al. (2005) proposed the idea of a Bayesian
GLSmodel error variance estimator and analyzed data for the Tibagi River and theMuskingumRiver basins.
This paper builds on that idea and provides a full suite of diagnostic statistics, thus providing a statistically
rigorous and comprehensive framework for the analysis of hydrologic information consisting of
cross‐correlated streamflow records of different length from stations across a region.

2. GLS Regression for Hydrologic Statistics

Streamflow data sets can be used to derive an empirical relationship between hydrologic characteristics at a
site, such as the T‐year flood or log‐space skewness coefficient, and physiographic variables, such as drainage
area and channel slope. Our GLS analysis assumes that the actual value of the quantity of interest yi (or some
transformation of yi) for a given site i can be described by a linear function of physiographic basin character-
istics with an additive error

yi ¼ β0 þ ∑
k

s¼1
βsXis þ δi i ¼ 1; 2;…; n sites; (1)

wherein Xis (s= 1… , k) are the elements of a matrix of k explanatory variables based upon the physical char-
acteristics at each site i, βs are the model parameters, and δi are the independently distributed model errors
with the following properties:

E δi½ � ¼ 0 Cov δi; δj
� � ¼ σ2δ i ¼ j

0 i≠j

(
: (2)

However, in most analyses, only an at‐site estimate of yi,byi, is available, and thus, a sampling error ηi should
be introduced into the model, such thatbyi ¼ yi þ ηi i ¼ 1; 2;…; n sites; (3)

with

E ηi½ � ¼ 0 Cov ηi; ηj
� �

¼ σ2ηi i ¼ j

σηiσηjρij i≠j

(
; (4)

whereinσ2ηi is the at‐site sampling error variance forbyi and ρij is the sampling error correlation coefficient due

to correlation among the statistic of interest at stations i and j (cross‐site correlation).
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In matrix notation, the GLS model is

by ¼ Xβþ ηþ δ ¼ Xβþ ε; (5)

where the (n × [k+ 1]) matrixX contains ones in the first column and values of the k explanatory variables in
the remaining columns, the vector β has the (k+ 1) parameters of the model that must be estimated, the vec-
tor η contains the sampling errors in the sample estimators, and the vector δ contains the model errors for
the n sites used in the analysis.

The errors εi are a combination of (i) sampling error ηi in the sample estimators of yi and (ii) underlying
model error δi. The total error vector ε has mean 0 and covariance matrix

E εεT
� � ¼ Λ σ2δ

� � ¼ σ2δIþ Σ byð Þ; (6)

where Σ byð Þ is the covariance matrix of the sampling errors in the sample estimators whose elements are
given by Equation (4) and σ2δ is the underlying model error variance, which must be determined. The value

of σ2
δ can be viewed as a heterogeneity measure (Madsen et al., 2002; Madsen & Rosbjerg, 1997).

WLS and OLS analyses are special cases of a GLS analysis. When bρ byi;byj� �
¼ 0 for every pair of sites (i ≠ j),

GLS reduces to WLS. WLS reduces to OLS when the diagonal covariance matrix has elements on the diag-
onal equal to a common value.

The GLS estimator of β and its respective covariance matrix for known σ2δ are given by

b ¼ XTΛ σ2δ
� �−1

X
h i−1

XTΛ σ2
δ

� �−1by; (7a)

Σ b½ � ¼ XTΛ σ2δ
� �−1

X
h i−1

: (7b)

The model error variance σ2δ can be estimated by either generalized MM or ML estimator, as described by
Stedinger and Tasker (1986). The MM generalized estimator is determined by iteratively solving
Equation (7a) along with the generalized residual mean square error equation:

by−Xbð ÞT bσ2δIþ Λ byð Þ� �−1 by−Xbð Þ ¼ n− k þ 1ð Þ; (8)

for n sites and k + 1 parameters. In some situations, the sampling covariance matrix explains all the varia-
bility observed in the data, which means that the left‐hand side of Equation (8) will be less than n − (k + 1)

even if bσ2δ is 0. In these circumstances, the MM estimator of the model error variance is generally taken to
be 0 (Stedinger & Tasker, 1985, 1986a, 1986b).

The ML estimators of β and σ2δ can be obtained by minimizing the negative of the log‐likelihood function of
the residuals, which are assumed to be normally distributed with zero mean and the covariance matrix in
Equation (6):

min ln Λ σ2δ
� ��� ��� �þ by−Xβð ÞTΛ σ2δ

� �−1 by−Xβð Þ
n o

; (9)

subject to bσ2δ ≥ 0, wherein|A|denotes the determinant of a matrix A. The ML estimate of β is the same as the

one computed by using Equations (7a) and (7b), except that the value of bσ2δ would be different. The variance

of β is the same as in Equations (7a) and (7b) because β and bσ2δ are asymptotically independent (Rencher,
2000). The inverse of the second derivative of the likelihood function could be used to estimate the variance

of the model error variance estimator when the constraint bσ2δ ≥ 0 is not binding (Bickel & Doksum, 1977).

3. Bayesian Approach

Reis et al. (2005) developed a Bayesian analysis of the GLS model. In particular, they computed the posterior
moments of the β parameters and the full posterior distribution of the model error variance σ2δ.
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The Bayesian approach requires the specification of prior distributions for both the β parameters and model
error variance σ2δ. A multivariate normal distribution with a mean of 0 and a large variance was used for the
prior for β. This almost noninformative prior produces a pdf that is relatively flat in the region of interest.
The prior information for the model error variance σ2δ was represented by an exponential distribution with
parameter λ, which represents the reciprocal of the prior mean of the model error variance. Following Reis
et al. (2005) for the regionalization of skews, we employ a value for λ equal to 6, though as experience accu-
mulates a smaller value or a different distribution may be justified.

The likelihood function for the data by is considered to be a multivariate normal distribution; thus, the mar-
ginal posterior distribution of the model error variance can be computed by integrating the joint posterior
distribution over the possible values of β (Zellner, 1971, equation 8.14; Kitanidis, 1986) to obtain

f σ2δjby� � ¼ ∫f β; σ2
δjby� �

dβ∝∫f byjβ; σ2δ� �
ξ β; σ2δ
� �

dβ; (10)

where f β; σ2δjby� �
is the joint posterior of the parameters and the model error variance, f byjβ; σ2δ� �

is the like-

lihood function for the databy, and ξ β; σ2δ
� �

is the joint prior for β andσ2δ. If one uses a noninformative prior on

β, the marginal posterior distribution for the model error variance, except for the normalizing constant, is

f σ2δjby� �
∝ Λ σ2δ

� ��� �� XTΛ σ2δ
� �−1

X
��� ���h i−1=2

exp −0:5 by−Xbð ÞTΛ σ2δ
� �−1 by−Xbð Þ

h i
ξ σ2δ
� �

: (11)

The importance of using the correct likelihood function for a data set is illustrated by Stedinger et al. (2008).
With Equation (11), one can compute the marginal pdf, mean, and variance of σ2δ by a numerical evaluation
of one‐dimensional integrals (Reis et al., 2005). Similarly, posterior moments of β can also be computed by a
one‐dimensional numerical integration using the pdf in Equation (11) where the conditional distribution of

βjσ2δ;by� �
is normal with mean and variance given in (7a) and (7b); thus, we have

μβ ¼ E βjbyð Þ ¼ ∫βf βjbyð Þdβ ¼ ∫E βjσ2δ;by� �
f σ2δjby� �

dσ2δ ¼ ∫b σ2
δ

� �
f σ2δjby� �

dσ2δ; (12)

Var βjbyð Þ ¼ ∫∫ β−μβ

� �
β−μβ

� �T
f βjσ2δ; by� �

f σ2δjby� �
dβdσ2δ

¼ ∫ b σ2δ
� �

−μβ

� �
b σ2

δ

� �
−μβ

� �T
þ ΧTΛ σ2δ

� �−1Χ� �−1
	 


f σ2δjby� �
dσ2δ:

(13)

Here the posterior variance of β equals the variance of the conditional mean b σ2δ
� �

plus the average of the

conditional variance of β for a given σ2δ (Reis et al., 2005).

4. Model Selection

A goal of model selection is to resolve which set of possible explanatory variables affords the most accurate
prediction, while also searching for the simplest model possible. Several traditional statistics are available for
model selection: R2, likelihood ratios, Mallows Cp, Akaike information criterion (AIC), and the Bayesian
information criterion (BIC) (Gelman et al., 2004; Linhart & Zucchini, 1986). Qian et al. (2005) employ
Bayes factors and a Bayesian deviance information criterion (DIC). Many of these statistics penalize model
complexity. Thus, a sufficient improvement in the model's prediction ability must result so as to support the
inclusion of an additional independent variable. Below, the B‐GLS regression statistics developed by the
authors to guide model selection are presented.

4.1. Average Variance of Prediction

Because our interest is to make predictions at gauged and ungauged sites, a natural metric to evaluate a
model is a variance of prediction, which penalizes the inclusion of extra independent variables because it
accounts for the sampling variance of the parameters (Carlin & Louis, 2000). Because the variance of predic-
tion generally depends upon the values of the independent variables at a given site, Tasker and Stedinger
(1986) suggested the use of an average variance of prediction (AVP), computed across the x values of sites
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used in the regression. This implicitly assumes that these sites are representative of the sites at which predic-
tions will be made.

For a new and perhaps ungauged site with a row vector of explanatory characteristics xo and a y value of yo,
the posterior expected value of yo is xoμβ, where μβ is the posterior expected value of β. With a Bayesian ana-
lysis, the posterior sampling error variance for xoμβ is

Var xoμβ

� �
¼ E

σ2δ
xo b−μβ

� �
b−μβ

� �T
þ XTΛ σ2δ

� �−1
X

� �−1
� �

xoT
	 


¼ xoVar βjby½ �xTo : (14)

The posterior variance of prediction for the unknown true value yo associated with xo is given by

VP ¼ E y0−x0μβ

� �2
� �

¼ E σ2δ
� �þ Var xoμβ

� �
¼ E σ2

δ

� �þ xoVar βjby½ �xTo : (15)

A measure of how well OLS, WLS, and GLS regression analysis would predict a hydrologic statistic on aver-
age over a new region, whose xowas like those in theXmatrix, is the AVP for a new site AVPnew, introduced
by Tasker and Stedinger (1986). For a Bayesian analysis, as shown in Gruber et al. (2007),

AVPnew ¼ E σ2δ
� �þ 1

n
∑
n

i¼1
xiVar βjby½ �xiT : (16)

However, if the prediction is for a site i that was used for estimation of the parameters of the model, the var-
iance of prediction for such an old site, VPold in Equation (A.13), requires an additional term. Appendix A
provides derivations of the expressions used to calculate variance of predictions.

Generally, we anticipate that models will be used at new sites, so AVPnew is the critical statistic for model
selection. However, if a regional estimator is nearly as precise as the at‐site estimator, then one may use
the regional estimator instead or a weighted average, in which case, VPold becomes relevant, if there is
any practical difference between the two.

4.2. Bayesian Plausibility Value

It is common in classical statistics to perform a hypothesis test to check if a given parameter is statistically
different from 0. If one cannot reject the null hypothesis that the value of the parameter is equal to 0, the
variable whose coefficient is being tested is generally dropped from the model. It is also common to report
a P value, which reflects the probability, under the null hypothesis, of computing a parameter value as large
or larger than the value obtained from the sample.

The Bayesian plausibility value, ψ, developed by Reis (2005) and expanded on by Gruber et al. (2007)
describes whether 0 is a plausible value for each β parameter in a regression analysis given the prior and
data. As discussed by Lindley (1965) and Zellner (1971), given the Bayesian posterior pdf of β and the avail-
able data, one can construct a credible region for the regression parameters. A credible region summarizes
the posterior belief about a parameter and can be the basis of a hypothesis test that concludes that a para-
meter is 0 if 0 is included in a 90% or a 95% credible region. This allows one to perform the equivalent of
a classical hypothesis test within a Bayesian framework using the posterior distribution of each parameter,
which also reflects the prior.

Here we define the plausibility level for 0 to be the smallest probability ψ such that 0 is in a 100(1− ψ)% cred-
ible region for a parameter. The plausibility value is computed as

ψ ¼ 2E
σ2δ

Φ −υ
b σ2δ
� �

σb σ2
δ

� �" #( )
; (18)

wherein Φ is the standard normal cdf and the conditional mean b (σδ2) and standard error σb(σδ2) for βi are
both dependent on σ2δ as indicated in Equations (7a) and (7b); υ = sign[μβ] = 1 for μβ ≥ 0 and −1 for μβ < 0.

The Bayesian P value discussed by Bayarri and Berger (2000) and Robins et al. (2000) corresponds to the
probability that another random sample X would generate a more extreme value of a test statistic than
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that which was observed and thus is a statistic more consistent with the classical P value. Those authors and
others have tried to develop a Bayesian P value that strictly reflects the data and not the prior. The Bayesian
plausibility value reflects the Bayesian point of view that the prior is also information about the parameters,
and thus, it is appropriate to use such information when deciding when to include a parameter in the model.

5. Regression Diagnostics

This section develops goodness of fit and diagnostic statistics for a Bayesian GLS regression analysis. First, a
pseudo adjusted R2 is proposed, and analysis of variance (ANOVA) for a GLS analysis is discussed, along
with two other diagnostic EVRs, leverage, influence, and σ‐influence statistics.

5.1. R2 and Analysis of Variance

The traditional R2 statistic measures the extent to which a model explains the variability in the data. It uses
the partitioning of the sum of squared deviations and associated degrees of freedom to describe the variance
of the signal versus the model error. Traditionally, for OLS regression, the total sum of squared deviations
about the mean (SST) is divided into two separate terms, the sum of squared errors explained by the regres-
sion model (SSR) and the residual sum of squared errors (SSE), where SST = SSR + SSE. The coefficient of

determination R2 and the adjusted R2 (denotedR
2
) both describe the fraction of the total variability themodel

explains, computed as

R2 ¼ SST−SSE
SST

¼ 1−
SSE
SST

; (19)

R
2¼1−

SSE n−k−1ð Þ
SST n−1ð Þ ¼ 1−

S2ε
S2y

:

Here n is the total number of observations, and k is the number of covariates used in the regression model in
addition to a constant.

For WLS and GLS analyses, these formulas do not provide the intended insight. The error of most concern is
the model error variance because the sampling error is unexplainable and represents noise that complicates
the analysis. A newmeasure is needed in which the sampling error variance is separated from the total error
variance, leaving behind the fraction of the variance accounted for by the model and by the model error.

Liu et al. (2005) and Han et al. (2009) use negative binomial regression to explain variations in the expected
number of power distribution system failures. Their observed discrete count data include sampling variabil-
ity, as does the by in our example. Their pseudo R2 value describes the fraction of the true variability in the
expected number of failures that their regression model explains.

The natural estimator for WLS and GLS models of the expected value of the sum of squared model errors
would be nσ2δ kð Þ for a model with k covariates plus a constant. A corresponding estimator of the expected

total variation in the true yi values, corresponding to SST neglecting sampling error, is nσ2δ 0ð Þ where σ2δ 0ð Þ
is the model error variance estimate when no explanatory variables are included but sampling errors are cor-
rectly deducted. Then, a pseudo coefficient of determination describing the fraction of the expected variabil-
ity in the true yi values that is explained by the model equals

R2
δ ¼

n σ2δ 0ð Þ−σ2δ kð Þ� �
nσ2

δ 0ð Þ ¼ 1−
σ2δ kð Þ
σ2δ 0ð Þ : (20)

We published this idea earlier in Reis (2005) and further refined the proposal in Gruber et al. (2007) and
Griffis and Stedinger (2007b). In actual practice, the Bayesian mean values of σ2

δ kð Þ and σ2δ 0ð Þ are employed.

R2
δ is a direct extension of R

2
in that it uses the ratio of unbiased estimators of the variance of the error δ and

the variance of y. However, a critical difference is thatR
2
is based upon the sample variance of the observed yi

and the computed residual errors bεi. Here, R2
δ is based upon the estimated variance of the unobserved yi and

of the unobserved δi values, so it is called a pseudo‐R2. If σ2δ kð Þ ¼ 0, then R2
δ ¼ 1 as it should.
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If no explanatory variables are employed, theR2
δwill be 0, as is expected.R

2
δ

fairly compares different WLS or different GLS models with varying num-
bers of parameters using the regional meanmodel (k= 0) as the base case.

Table 1 presents a pseudo ANOVA table for WLS or GLS. This table
describes how much of the variation in the observations can be attributed
to the model and how much to model error and sampling error, respec-
tively.We can describe the total sampling error sum of squares by its mean
value, which is tr Σ byð Þ½ �, where tr[A] is the trace of the matrix A. As noted
above, because there are n observations, the total variation due to the
model error δ for a model with k parameters has a mean equal to nσ2δ kð Þ
. These provide descriptions of two of the three sources of variation.
This is called a pseudo ANOVA because the contributions of the three
sources of error are estimated or constructed, rather than being deter-
mined from the computed residual errors and the observed model predic-
tions. The impact of correlation among the sampling errors is ignored.

If the sampling variance is not small in comparison to the model error var-
iance, a WLS or GLS analysis is more appropriate than an OLS analysis. The EVR provides a measure of the
relative importance of the sampling error compared to the model error (Griffis & Stedinger, 2007b; Gruber
et al., 2007). Thus, it provides an indication of the need for a WLS or GLS analysis. Based on Table 1, the
EVR is defined as

EVR¼ SS sampling errorð Þ
SS model errorð Þ ¼ tr Σ byð Þ½ �

nσ2δ
: (21)

As a rule of thumb, when the EVR is greater than 20%, one should employ aWLS or GLS analysis as opposed
to OLS. If the EVR is less than 10%, the OLS results should be close to the WLS or GLS results depending
upon the heterogeneity of the errors.

Although EVR distinguishes between the need for an OLS versus a WLS/GLS analysis, it does not determine
whether a GLS regression is needed to address cross correlation. Thus, themisrepresentation of the beta variance
(MBV) statistic was developed to determine whether a WLS regression is sufficient or if a GLS regression is
needed (Griffis & Stedinger, 2007b). The MBV describes the error made by a WLS regression analysis in its eva-

luations of the precision of bWLS
0 , which is the estimator of the constant β0. Covariance among the estimated yi's

generally has its greatest impact on the precision of the constant term (Stedinger & Tasker, 1985) and zero‐one
regional indicator variables. However, as stated in Veilleux (2011), the weights used by Griffis and Stedinger
(2007b) to calculate the MBV are not the correct weights for determining the error made by a WLS regression

error analysis in its evaluation of the precision of bWLS
0 . MBV was computed using weights that are the inverse

of the standard deviation. Instead, a correct WLS analysis would weight each observation by the inverse of
the variance. Thus, a corrected MBV is defined below as MBV* using the correct weights (Veilleux, 2011).

MBV* ¼ Var bWLS
0 jGLS analysis

� �
Var bWLS

0 jWLS analysis
� � ¼ wTΛw

wTv
where wi ¼ 1

Λii
; (22)

where ν is an (n × 1) vector of ones. IfMBV* is substantially larger than 1, then the GLS estimate of the var-
iance of the constant term will be that much larger than the value provided by WLS. If all sites in the region
have the same record length n, all records are concurrent, and all cross correlations among thebyi are equal to
ρη, MBV* would be

MBV* ¼ 1þ n−1ð Þρη
EVR

EVRþ 1
: (23)

This special case shows the critical importance of the number of sites n in an analysis and the cross‐correlation ρη
of the at‐site estimators byi. This indicates that in the case of our skew regression example, wherein EVR ¼ Varbyð Þ=σ2δ is generally greater than 2 or 3, the precision of our constant estimator will be particularly sensitive to
cross‐correlation ρη and GLS is likely to be required to obtain statistically valid results.

Table 1
Pseudo ANOVA Table for WLS and GLS Regression Analyses

Source Degrees of freedom Sum of squares

Model k
n σ2δ 0ð Þ−σ2δ kð Þ� �

Model error, δi n − k − 1
n σ2δ kð Þ� �

Sampling Error, ηi n
∑n

i¼1Var ŷið Þ
Total 2n − 1

n σ2δ 0½ �� �þ∑n
i¼1Var ŷið Þ

EVR ¼ ∑n
i¼1Var ŷið Þ
n σ2δ k½ �� �

MBV * ¼ Var bWLS
0 jGlS analysis½ �

Var bWLS
0 jWlS analysis½ � ¼

wTΛw
wTν where wi = 1/Λii, υ = (n × 1) vector

of 1's.
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5.2. Leverage and Influence

Leverage, as adopted by Tasker and Stedinger (1989, Equation (23)), considers whether an observation or x
value is unusual and thus likely to have a large effect on the estimated regression coefficients (Cook &
Weisberg, 1982). How to measure leverage can be problematic. It is not clear how to describe how large a
change in different residuals should be considered when model errors are heteroscedastic. The first leverage
measure, suggested by Tasker and Stedinger (1989, Equation (23)), considers the effect of a unit change in
each residual. If all the residuals have the same units and precision, then this is an appropriate measure
of the effect of equivalent errors in the different observations. Thus, this leverage measures the
marginal/unit impact of the residuals εi on the estimated yi values. In a Bayesian context, as shown in
Reis (2005), the leverage measure described by Tasker and Stedinger (1989) becomes

leverage ið Þ ¼ ∂byi
∂εi

¼ E
σ2δ

xi XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1

ei

� �
; (24)

where byi is the estimator of yi associated with xi and ei is a unit column vector with 1 at the ith row and 0
otherwise. Tasker and Stedinger (1989) show that the average value of this leverage statistic is (k + 1)/n.
Generally, 2(k + 1)/n is considered to be a large value.

This leverage statistic seems appropriate when lack of fit can be described by errors of the same magnitude.
For example, this would be appropriate when modeling skew coefficients or the log 100‐year flood estimates
at different sites, as opposed to when some equations describe head and others flow characteristics in a
groundwater model (Yager, 1998).

The second measure of leverage introduced here considers not a unit change in each residual but a change
proportional to the standard deviation of that residual. Thus, this measure considers the likely statistical var-
iation in each εi and the effect of such variation. Statistical leverage is computed as

S−leverage ið Þ ¼ ω k þ 1ð Þ ∂byi
∂εi

σεi ¼ ω k þ 1ð Þ leverage ið Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ σ2δ
� �

ii

q� �
; (25)

where ω ¼ 1=∑
n

j¼1
leverage ið Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ σ2δ
� �

jj

q
.

As it is defined, the average value of S‐leverage is also equal to (k+ 1)/n. Twice the average value, 2(k + 1)/n,
is considered to be a large value.

Statistical leverage is an appropriate statistic to consider when the concern is with the likely effect on the
regression of probabilistic variation in each residual. Because the GLS weights depend upon the statistical
precision of each εi, the leverage in (24) for a point often increases as the at‐site record length increases
because of the greater weight assigned to the observation, whereas statistical leverage in (25) is less depen-
dent on record length. If an observation has small leverage, then, given its anticipated statistical precision
and the leverage associated with the corresponding x, the observation is unlikely to have any effect on esti-
mated model parameters. The leverage in (24) may be more appropriate when one is concerned with the
impact of gross errors in a model's structure, but it does not correct for differences in units among the εi.
Examples in the application section illustrate the use of these statistics.

A third measure of leverage was developed for use with ROI regression. ROI creates a unique region, or set of
gauged basins, for each ungauged basin of interest. The ROI regression can be used to predict hydrologic
quantities such as flood quantiles for the target basin (Eng, Stedinger, et al., 2007). ROI leverage is computed
as (Eng, Stedinger, et al., 2007)

ROI−leverage ið Þ ¼ ∂by0
∂εi

¼ x0 XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1� �

ei; (26)

where x0 is a vector of basin attributes for the ungauged sites of interest. ROI leverage measures the impact
on the estimate of y0 at site 0 with x= x0 of a unit error ei at other sites i, i= 1… , n. In an ROI regression, one
would like all the ROI leverage statistics to be positive with about the same value.
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Unlike leverage that highlights points, which are likely to affect the fit of the regression, influence describes
those points that did have an unusual impact on the regression analysis. An influential observation is one
with an unusually large residual that had a disproportionate effect on the fitted regression relationships.
Influential observations often have high leverage. The following influence measure proposed by Tasker
and Stedinger (1989) is based on Cook's D (Clarke, 1994; Cook & Weisberg, 1982),

Di ¼ Kiibε2i
k þ 1ð Þ λii−Kiið Þ ; (27)

where (k + 1) is the dimension of β, λii are the diagonal elements of Λ, and Kii are the diagonal elements of

K ¼ X XTΛ−1X
� �−1

XT ; (28a)

so that λii − Kii is the variance ofbεi, as demonstrated in Appendix A. Tasker and Stedinger (1989) suggested
that influence is large whenDi is greater than 4/nwhere n is the number of sites. In a Bayesian analysis, to be
correct, one should employ KB, the average value of (28a),

KB ¼ XE
σ2δ

XTΛ σ2δ
� �−1

X
� �−1

� �
XT : (28b)

A second measure of influence, σ‐influence (Gruber et al., 2007), determines if any observation had an unu-
sual impact on the estimated model error variance. In developing regional skew models, for example, the
model error variance is very important because it determines the weight placed on the regional skew relative
to the at‐site estimator. The σ‐influence statistic describes the relative influence of each observation on the
estimated model error variance. The influence statistic Di described above identifies those observations with
significant influence on the model predictions. Di does not necessarily describe whether the point has a sig-
nificant influence on the estimated model error variance. The σ‐influence is calculated as

σ−Influencei ¼
2∑

n

j¼1
bεi Λ σ2δ

� �−1� �
ij
bεj

∑
n

i¼1
∑
n

j¼1
bεi Λ σ2δ

� �−1� �
ij
bεj ¼

2bεi Λ σ2δ
� �−1bε� �

ibεTΛ σ2δ
� �−1bε : (29)

Here the standardized sum‐of‐squaresbεTΛ σ2
δ

� �−1bε used to compute the likelihood function for the data (and

the generalizedMMmodel error variance in Stedinger & Tasker, 1985) is divided among the n different sites.
By construction, the average value of σ‐influence is 2/n, where n is the number of sites in the regression;
thus, σ‐influence values greater than 4/n are considered to be large, as is the case with Di.

6. Application: Regional Skew Estimation

Bulletin 17C (England et al., 2018) recommends the use of the log‐Pearson type III distribution for flood fre-
quency analysis. The data available at a given site are often short, thus providing an inaccurate estimate of
the skewness coefficient. In order to improve the precision of the skewness estimator, Bulletin 17C recom-
mends combining a regional skew with the at‐site skew (Hardison, 1975; Tasker, 1978; McCuen, 1979,
2001; IACWD, 1982; Stedinger et al., 1993; Griffis et al., 2004). Griffis and Stedinger (2009, Appendix A) show
that the Bulletin 17B (IACWD, 1982) mean squared error (MSE) weighted skewness estimator results in the
estimator with the smallest MSE provided that the regional skew is unbiased and independent of the at‐site
skew estimator. Griffis and Stedinger (2007a, 2009) illustrate the value of a good regional skewness estimator
in terms of the precision of flood quantile estimates. McCuen and Smith (2008) developed a regressionmodel
for the skewness coefficient based on rainfall skew and basin storage variables. However, it is unclear
whether they are addressing log‐space or real‐space skewness. Reis et al. (2005) evaluated regional skew
for 17 sites in the Tibagi River basin and for 44 sites in the Muskingum River basin using different statistical
models. For this study, regional skew was evaluated for the Piedmont region in the Southeastern U.S. with
92 stations with record lengths varying from 19 to 108 years. We compare the results of OLS, WLS, and GLS
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regional regression analyses using MM and Bayesian model error variance estimators. The USGS conducted
many regional skew studies, and citations are provided in section 1.

The following basin characteristics were available for use in the regression models: (1) drainage area, A, in
squaredmiles; (2) main channel slope in feet per mile; (3) average basin slope in percentage; (4) length of the
main channel in miles; (5) basin perimeter length in miles; (6) basin shape factor (BSF), defined as the ratio
between the perimeter squared and the drainage basin; (7) the mean basin elevation in feet above sea level;
(8) the maximum basin elevation in feet above NAVD88; (9) the minimum basin elevation in feet above
NAVD88; (10) mean annual precipitation; (11) fraction of impervious surface area expressed in percentage
of drainage area; (12) forest cover expressed as percentage of drainage area; (13) mean soil drainage index,
which varies from 1 to 7, with 1 denoting excessively drained soil; and (14) mean hydrologic soil index
(HSI), which varies from 1 to 4, with 1 denoting high infiltration rate.

6.1. The Sampling Covariance Matrix (Σ)

Estimates ofσ2ηi andbρ byi;byj� �
are required. Griffis and Stedinger (2009) provide an accurate approximation of

σ2ηi that, with the skewness estimator unbiasing factor in Tasker and Stedinger (1986), equals:

Var Gð Þ ¼ 1þ 6
m

� �2 6
m

þ a mð Þ
� �

1þ 9
6
þ b mð Þ

	 

γ2 þ 15

6*8
þ c mð Þ

	 

γ4

� �
; (30)

wherein

a mð Þ ¼ −17:75
m2 þ 50:06

m3 , b mð Þ ¼ 3:92
m0:3−

31:1
m0:6 þ 34:86

m0:9 , and c mð Þ ¼ − 7:31
m0:59 þ 45:9

m1:18 −
86:5
m1:77.

Table 2
Skew Regression for the Piedmont Region in the Southeastern U.S. (Number of Sites = 92)

Regression parameters Regression diagnostics

Model Const HSI σ 2
δ ASV AVPnew R2

δ

MM‐OLS −0.109 0.869 0.279 0.006 0.285 0.108
(0.055) (0.263)
(5.3%) (0.2%)

MM‐WLS −0.095 0.814 0.086 0.006 0.092 0.253
(0.052) (0.252)
(7.3%) (0.2%)

B‐WLS −0.095 0.821 0.085 0.005 0.090 0.201
(0.050) (0.242)
(4.7%) (0.1%)

MM‐GLS −0.095 ‐ 0.096 0.010 0.106 0.0
(0.098) ‐

(33.8%) ‐

B‐GLS −0.094 ‐ 0.080 0.009 0.090 0.0
(0.097) ‐

(33.2%) ‐

MM‐GLS2 −0.096 0.588 0.090 0.014 0.103 0.137
(0.098) (0.304)
(33.3%) (6.7%)

B‐GLS2 −0.095 0.557 0.080 0.013 0.094 0.0004
(0.097) (0.299)
(32.6%) (6.1%)

Note. Table reports best models in terms of minimum average variance of prediction (AVP) for a new site. Standard errors, classical (OLS andMM) and Bayesian
estimates, and Bayesian plausibility values (%) are presented in parentheses. Average sampling variance (ASV) is reported for each model.
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Here m is the sample size, and γ is the true value of skew. The factor [1+6/m]2 in Equation (30) should be
employed when the bias correction factor proposed by Tasker and Stedinger (1986) is used in the estimation
of the at‐site skew, which is computed as

G ¼ 1þ 6
m

� �
m∑m

t¼1 ut−uð Þ3
m−1ð Þ m−2ð Þs3 ; (31)

where ut is the logarithm of the annual peak flows in year t and s is the sample standard deviation of ut.
Because the true values of skews at each site are unknown, the regional mean of the skews is used in
Equation (30).

Martins and Stedinger (2002) express the intersite correlation coefficient between two Gi in terms of the
intersite correlation coefficient ρij between concurrent flows as

bρ Gi;Gj
� � ¼ cf ij

� �
ρκij; cf ij ¼ mij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mij þmi
� �

mij þmj
� �q

; (32)

where the exponent κ depends upon the regional value for γ and is equal to 2.8 for γ = 0,mij is the common
record period, andmi andmj are the extra observation period for stations i and j, respectively. The factor (cfij)
accounts for the sample size differences between stations and the concurrent record length: It worked rea-
sonably well for the skew coefficient in the range considered (−1 ≤ γ ≤ 1).

The use of sample estimates of ρij may result in a covariance matrixΛ σ2δ
� �

that is not positive definite due to

sampling uncertainties and variations in concurrent record lengths (Tasker & Stedinger, 1989). Therefore,
one can use a smoothed estimate of ρij that depends on the distances between any two stations ρ(dij). For this
area in the Piedmont region, a good model was

ρ dij
� � ¼ θ

τdij
αdijþ1

� �
; (33)

wherein θ = 0.993, α = 0.00989, and τ = 2.78; dij is the distance between sites in miles.

Tables 2 and 3 present the results of the analysis for the Piedmont region in the Southeastern U.S. The fol-
lowing sections describe the results in detail.

Table 3
Sensitivity Analysis for the B‐GLS Model

Regression parameters Regression diagnostics

Model Constant BSF σ2δ ASV AVPnew R2
δ

Without Site 40
B‐GLS −0.111 ‐ 0.066 0.009 0.075 0.000

(0.096) ‐

(24.6%) ‐

Without Site 87
B‐GLS −0.126 0.031 0.056 0.012 0.068 0.171

(0.145) (0.015)
(18.9%) (3.8%)

Without Site 70
B‐GLS −0.078 ‐ 0.070 0.009 0.079 0.000

(0.097) ‐

(41.8%) ‐

Note. Table reports best models in terms of minimum average variance of prediction (AVP) for a new site. Standard errors and Bayesian plausibility values (%) are
presented in parentheses. Average sampling variance (ASV) is reported for each model.
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6.2. OLS Regression Models

As expected, the MM‐OLS model error variance estimate is much larger than those obtained with WLS and
GLS. The OLS model with minimum AVP for a new site is composed of a constant and the HSI (MM‐OLS in
Table 2). As shown in Table 2, the model error variance, σδ

2, for MM‐OLS is 0.279 with an AVPnew of 0.285.
These values are much larger than any of the results obtained using WLS or GLS analysis.

The exaggerated variance of predictions occurs because the OLS regression analysis does not make any dis-
tinction between the variance due to the model error and the variance due to time sampling error. This con-
cept is reinforced when viewing the EVR results from the pseudo ANOVA table (Table 4). The EVR for Case
1 is very large, 2.29, implying that the variation due to sampling error is over twice as large the variation due
to model error. Clearly, a WLS or GLS model should be employed rather than an OLS model.

6.3. WLS Regression Models

In the case of the weighted least squares regression, both the MM and Bayesian estimators were used. Like
the best OLS regression model, the best WLS model in terms of AVPnew also employs a constant and HSI as
explanatory variable regardless of the estimator used (MM‐WLS and B‐WLS in Table 2). MM‐WLS and
Bayesian WLS estimates were very similar. The model MM‐WLS (B‐WLS), as presented in Table 2, has an
AVPnew of 0.092 (0.090) and amodel error variance equal to 0.086 (0.085). Both values are much smaller than
those obtained with MM‐OLS.

In order to determine if a WLS analysis is sufficient, the misrepresentation of beta variance (MBV*) can be
consulted. As shown in Table 4, Case 1 has anMBV* of 1.9. These results clearly suggest that the correlation
among estimators of skew in these regions should not be neglected by usingWLS; otherwise, the model error
variance as well as the AVP of the regional skew will be underestimated.

6.4. GLS Regression Models

In the case of GLS regression, both the MM and Bayesian estimators were tested. Unlike the best models
obtained when OLS and WLS models are used, which consisted of a constant and the HSI as explanatory
variables, the best GLS model in terms of AVPnew is a simple regional mean regardless of the estimator used
in the analysis (MM‐GLS and B‐GLS in Table 2). In the GLS case, the HSI should not be used as explanatory
variable (see MM‐GLS2 and B‐GLS2 models in Table 2) because its coefficient is either no longer significant
at 5% level, in the case of MM‐GLS2 model, or 0 is contained in its 95% credible interval, in the case of
B‐GLS2 model, as suggested by its Bayesian plausibility values of 6.1%. But that is not the only reason for
choosing a simple regional mean model. The AVPnew of MM‐GLS2 is almost the same as that of the regional
mean, meaning the increase in model complexity yields no increase in precision and thus does not appear to
be justifiable. In the Bayesian case, the situation is even more clear because the AVPnew of the B‐GLS2 is lar-
ger than that of the regional mean model.

Although the MM‐GLS and B‐GLS regional mean models have almost identical parameter estimates, their
model error variance and AVPnew are different. The B‐GLS's model error variance and AVP for a new site
are, respectively, 17% and 13% smaller than those associated with the MM‐GLS.

Table 4
Pseudo ANOVA Table for the Piedmont Region in the Southeastern U.S. (B‐GLS)

Source
Degrees of freedom Sum of squares

Case 1 Cases 2 and 4 Case 3 Case 1 Case 2 Case 3 Case 4
(all sites) (w/o 40) (w/o 87) (w/o 70)

Model k = 0 k = 0 k = 1 0.0 0.0 1.1 0.0
Model error n − k − 1 = 91 n − k − 1 = 90 n − k − 1 = 89 7.4 6.0 5.1 6.4
Sampling error n = 92 n = 91 n = 91 16.9 16.8 16.8 16.8
Total 2n − 1 = 183 2n − 1 = 181 2n − 1 = 181 24.3 22.8 23.0 23.2
EVR 2.29 2.79 3.29 2.64
MBV* 1.90 1.91 1.94 1.91

R2
δ

0.000 0.000 0.171 0.000
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Figure 1 provides an overall view of the differences among models (OLS,
WLS, and GLS) and estimators (MM and Bayesian) with respect to model
error variance and AVP for a new site, AVPnew. These two metrics are key
for model selection and weights on regional and at‐site estimates of
log‐space skews.

OLS, WLS, and GLS models are based on different assumptions about the
data, so it is not a surprise that they provide different interpretations on
how the skew varies over the region. The largest difference is the precision
of regional estimates. One can clearly see that OLS estimates of σ2δ and

AVPnew are much larger than those obtained by WLS and GLS analyses.
WLS models neglect the presence of cross correlation, resulting in
estimates of σ2δ and AVPnew that are different than those obtained by

GLS models. The Bayesian estimator provided models with smaller σ2δ
and AVPnew than those obtained with MM estimator. A Bayesian
estimator is more appropriate because it is based on the full posterior
distribution of both the parameters and the error variance of the regional
model, describing in a more reasonable fashion the possible values of the
model error variance.

6.5. Sensitivity Analysis and Diagnostic Statistics for B‐GLS Models

This section offers a diagnostic analysis of the best B‐GLS model for the Piedmont region data in the
Southeastern U.S. Figure 2 presents the leverage and influence results for the B‐GLS model for the 20 sites
with largest influence. The sites are ordered by decreasing influence, as it identifies those sites that had a
large impact on the analysis.

Site 40 has the highest influence and σ‐influence values, implying that it has a large impact on the model
error variance. Site 40 was removed from the B‐GLS analysis as a test (Case 2 in Table 4). As expected, σδ

2

of B‐GLS (without site 40) decreased from 0.080 to 0.066, a 25% reduction, as shown in Table 3. Site 40
has such a large impact on the regression analysis because it has a large positive at‐site skew value of 1.50
and the second largest residual of 1.60, although it has 47 years of record length, which is close to the average

value of record lengths in the region. Other sites have also large at‐site
skews and large residuals, but they are not as influential as Site 40 because
they have smaller record lengths. For instance, Site 18 has the most
extreme at‐site skew and the largest residual, but it is only the fifth most
influential because it has a short record length of just 26 years, the fifth
shortest among the 92 sites used in the study. Site 2 is also an example
of how the record length affects the degree of influence of a site in the ana-
lysis. It has the second largest at‐site skew and the third largest residual,
but it is only the ninth most influential site because of its short record
length of 25 years.

We also removed Site 87 from the B‐GLS model as a test (Case 3 in Table
4). Although Site 87 has only the eighth largest at‐site skew and the sixth
largest residual, it is the second most influential because it has a record
length of 70 years. As shown in Table 3, when Site 87 is removed, the best
Bayesian GLS model includes the basin shape factor as explanatory vari-
able, resulting in a new σ2δ of 0.056, a 30% reduction when compared to
the regional mean model based on the 92 sites.

The last action taken based on the sensitivity analysis run in the
Piedmont region data was the removal of Site 70 (Case 4 in Table 4),
which had the third largest influence in the study, the seventh at‐site
skew, and the eight largest residual. As shown in Table 3, when Site
70 is removed from the B‐GLS model, there is a decrease in σδ

2 from
0.080 to 0.070.

Figure 1. Model error variance (σ2δ) and average variance of prediction for a
new site (AVPnew) for the Piedmont region in the Southeastern U.S.

Figure 2. Regression diagnostics: leverage and influence for the Piedmont
region in the Southeastern U.S. B‐GLS model. The solid, horizontal line
represents the threshold for high leverage and high statistical leverage,
while the dashed, horizontal line represents the threshold for high influence
and high σ‐influence.
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Table 4 contains the pseudo ANOVA results for both the B‐GLSmodel and the three sensitivity analyses. The
pseudo ANOVA table clearly demonstrates that for all four cases in the Piedmont region, the sampling error
is at least twice as large as the model error, EVR ≥ 2.29.

7. Conclusions

Reis et al. (2005) developed quasi‐analytic Bayesian model error variance and β estimators for a GLS regres-
sion model. That analysis is the foundation of a new operational and comprehensive GLS regional hydrolo-
gic statistical methodology. New regression diagnostic statistics for B‐WLS and B‐GLS models include
pseudo analysis of variance tables, a pseudo adjusted R2, and the EVR and MBV quantifying the need for
a WLS or GLS model. Bayesian leverage, influence, and σ‐influence help identify rogue and influential data
points and thus help complete the framework.

Regionalization of the log‐space skew, the shape parameter of the log‐Pearson type III distribution in the
Southeastern U.S., illustrates the methodology. Results obtained from OLS, WLS, and GLS analyses were
compared, as well as the results using the Bayesian and MMmodel error variance estimators. The OLS ana-
lysis provides misleading results because it does not make a distinction between the variance due to the
model error and the variance due to time sampling error in estimated at‐site skewness coefficients. GLS
was the best framework because the cross correlation of the skewness estimators, which is neglected by
WLS, proved to be important in the estimation of the standard errors of parameters, which guides model
selection. This example demonstrates that the true model error variance for regional skew models is on
the order of 0.10 or less.

An analysis of the best B‐GLS models illustrates that the roles of record length, skew, and residual values
play in the estimation of themodel error variance and AVP, which affects model selection and the regression
coefficients. One sees how leverage, influence, and σ‐influence statistics can be useful in identifying stations
that actually did have a significant impact on the analysis. The new B‐GLS framework provides an opera-
tional, statistically rigorous, and comprehensive methodology for analysis of hydrologic regional hydrologic
information consisting of cross‐correlated streamflow records of different length from stations in a region;
regression diagnostics correctly attribute variability to different sources (variation explained by time sam-
pling error, the model, and model error and total sampling error) and identify potentially influential and
rogue observations.

Appendix A.

This appendix provides a clean and consistent derivation of key expressions employed to compute the AVP
for both new and old sites, as well as leverage and influence.

A.1. Variance of the Residuals

Let y be the vector of the true value of the statistic of interest,by the at‐site estimate, andbyp the prediction of y

produced by a fitted regression model. Then, the residual vector is given by

bε ¼ by−yp ¼ by−Xb ¼ by−X XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1by ¼ I−Hð Þby; (A:1)

wherein the GLS hat matrix H is defined as

H ¼ X XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1

: (A:2)

That the leverages in Equation (24) are the average values of the diagonal elements hii ofH follows from byp
¼ Hby. The average of the n leverage values tr[H]/n equals (k + 1)/n because
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tr H½ � ¼ tr X XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1� �

¼ tr XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1

X
� �

¼ tr Ikþ1½ � ¼ k þ 1ð Þ:
(A:3)

For the OLS case, the hat matrix H has simply the traditional value H = X(XTX)−1XT.

Substituting the equality by ¼ Xbþ ε into (A.1), the computed residuals can be written as a function of the
total error ε:

bε ¼ I−Hð Þε: (A:4)

Given E εεT½ � ¼ Λ σ2δ
� �

, one finds thatHΛ σ2δ
� �

HT ¼ Λ σ2δ
� �

HT as can be demonstrated by substitution forH

the expression in (A.2). Thus, the covariance matrix of the estimated residuals is

E bεbεTh i
¼ E I−Hð ÞεεT I−HT

� �� � ¼ E εεT−HεεT−εεTHT þHεεTHT
� �

¼ Λ σ2δ
� �

−HΛ σ2δ
� �

−Λ σ2δ
� �

HT þHΛ σ2δ
� �

HT ¼ I−Hð ÞΛ σ2δ
� � ¼ Λ σ2δ

� �
−K;

(A:5)

which is clearly symmetric and whereK is defined in Equations (28a) and (28b). For everyσ2δ, the mean ofbε is
0, so in a Bayesian framework, the covariance of bε is E bεbεT� � ¼ E Λ σ2δ

� �
−K

� �
.

Similarly, the variance of β for a given Λ σ2δ
� �

is obtained by noting that

b ¼ XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1by ¼ XTΛ σ2δ

� �−1
X

� �−1
XTΛ σ2δ

� �−1
Xβþ εð Þ

¼ βþ XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2
δ

� �−1ε: (A:6)

Thus, for given Λ σ2δ
� �

,

E β−bð Þ β−bð ÞT
h i

¼ E XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1εεTΛ σ2

δ

� �−1
X XTΛ σ2δ

� �−1
X

� �−1
� �

¼ XTΛ σ2δ
� �−1

X
� �−1

:

(A:7)

A.2. Variance of Prediction

The vector of differences between the true and predicted values is

y−yp
� �

¼ Xβþ δ−Xb ¼ Xβþ δ−X XTΛ σ2δ
� �−1

X
� �−1

XTΛ σ2δ
� �−1

Xβþ εð Þ ¼ δ−Hε: (A:8)

Thus, the covariance matrix for the prediction errors for given Λ is just

E y−yp
� �

y−yp
� �T

� �
¼ E δ−Hεð Þ δ−Hεð ÞT

h i
¼ E δδT−δεTHT−H εδT þHεεTHT

� �
: (A:9)

Noting that δ for new sites and ε for old sites are uncorrelated, the covariance matrix for the predictions at
new sites is simply

E y−yp
� �

y−yp
� �T

� �
¼ E δδT þHεεTHT

� �
: (A:10)

Therefore, substituting E[εεT] = Λ with H from ((A.2)), the variance of prediction at a new site is given by
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VPnew ið Þ ¼ σ2δ þ xi XTΛ σ2δ
� �−1

X
� �−1

xiT : (A:11)

However, if the predictions are made for those n old sites used in the regression, the covariance matrix of the
predictions becomes

E y−yp
� �

y−yp
� �T

� �
¼ E δδT−2δδTHT þHεεTHT

� � ¼ σ2
δIþHΛ σ2δ

� �
HT−2σ2δH

T ; (A:12)

because the model error δι for the site is also part of the sampling error of the estimator.

Thus, the variance of prediction for an old site is

VPold ið Þ ¼ σ2δ þ xi XTΛ σ2δ
� �−1

X
� �−1

xTi −2σ
2
δxi XTΛ σ2δ

� �−1
X

� �−1
XTei; (A:13)

wherein ei is a column vector with one at the ith row and 0 otherwise. In a Bayesian analysis wherein σ2δ is a
random variable, one should employ the appropriate expected values in Equations (A.2), (A.7), (A.11), and
(A.13), as in Equations (12)–17.
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