Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70725
Tipo: Artigo de Evento
Título : Extending the minimal learning machine for pattern classification
Autor : Souza Júnior, Amauri Holanda de
Corona, Francesco
Miché, Yoan
Lendasse, Amaury
Barreto, Guilherme de Alencar
Fecha de publicación : 2013
Editorial : Brazilian Congress on Computational Intelligence
Citación : BARRETO, G. A. et al. Extending the minimal learning machine for pattern classification. In: BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE, 11., 2013, Ipojuca. Anais... Ipojuca: IEEE, 2013. p. 236-241.
Abstract: The Minimal Learning Machine (MLM) has been recently proposed as a novel supervised learning method for regression problems aiming at reconstructing the mapping between input and output distance matrices. Estimation of the response is then achieved from the geometrical configuration of the output points. Thanks to its comprehensive formulation, the MLM is inherently capable of dealing with nonlinear problems and multidimensional output spaces. In this paper, we introduce an extension of the MLM to classification tasks, thus providing a unified framework for multiresponse regression and classification problems. On the basis of our experiments, the MLM achieves results that are comparable to many de facto standard methods for classification with the advantage of offering a computationally lighter alternative to such approaches.
URI : http://www.repositorio.ufc.br/handle/riufc/70725
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2013_eve_gabarreto.pdf1,02 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.