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Abstract—The Minimal Learning Machine (MLM)
has been recently proposed as a novel supervised
learning method for regression problems aiming at
reconstructing the mapping between input and output
distance matrices. Estimation of the response is then
achieved from the geometrical configuration of the out-
put points. Thanks to its comprehensive formulation,
theMLM is inherently capable of dealing with nonlinear
problems and multidimensional output spaces. In this
paper, we introduce an extension of the MLM to classi-
fication tasks, thus providing a unified framework for
multiresponse regression and classification problems.
On the basis of our experiments, the MLM achieves
results that are comparable to many de facto stan-
dard methods for classification with the advantage of
offering a computationally lighter alternative to such
approaches.

I. Introduction

Classification takes an important role in supervised
learning. The problem consists in identifying to which of a
set of categories (classes) a new observation belongs, on the
basis of a training dataset containing observations whose
category membership is known. When observations belong
to two classes only, the problem is referred to as binary
classification; naturally when there are more than two
possible classes, it corresponds to a multi-class problem.
Among the state-of-the-art methods for classification, we
could mention the MultiLayer Perceptron (MLP, [1]); the
Support Vector Machine (SVM, [2]), Gaussian Processes
(GP, [3]) and the Extreme Learning Machine (ELM, [4]).

The Minimal Learning Machine (MLM, [5]) is a re-
cently proposed method for supervised learning. The basic
idea behind the Minimal Learning Machine is the existence
of a mapping between the geometric configurations of
points in the input and output space. Such a mapping
can be reconstructed by learning a multi-response linear
regression model between distance matrices. Under these
conditions, for an input point with known configuration
in the input space, its corresponding configuration in the
output space can be easily estimated after learning a
simple linear model between input and output distance
matrices. The resulting estimate is then used to locate the
output point and thus provide an estimate for the response.

Even though the Minimal Learning Machine was pro-

posed to deal with both regression and classification, the
MLM has not been thouroughly evaluated on classification
tasks. In this work, we discuss a natural extension of
the MLM to multi-class classification and we evaluate its
performance on real-world classification problems. On the
basis of our experiments, the MLM achieves accuracies
comparable and even better than those obtained with
state-of-the-art methods and it still offers a computation-
ally light alternative to such approaches.

The remainder of the paper is organized as follows.
Section II overviews the Minimal Learning Machine; the
general formulation of the MLM is discussed (Section II-A)
and its properties presented (Section II-B). In Section
III, we propose an extension of the MLM to classifica-
tion problems along with an illustrative example (Section
III-A). In Section IV, a thorough experimental assessment
of the Minimal Learning Machine is conducted to evaluate
its performance and to compare it with state-of-the-art
approaches in classification tasks.

II. Minimal Learning Machine

In this section, we formulate the Minimal Learning
Machine (MLM, [5]) and we discuss its computational
complexity and its (hyper-)parameters.

A. Formulation

We are given a set of N input points X = {xi}Ni=1,
with xi ∈ R

D, and the set of corresponding outputs
Y = {yi}Ni=1, with yi ∈ R

S . Assuming the existence of
a continuous mapping f : X → Y between the input and
the output space, we want to estimate f from data with
the multiresponse model

Y = f(X) +R.

The columns of the matrix X = [x(1), . . . ,x(D)] correspond
to the D inputs and the rows to the N observations.
Equally, the columns of the matrix Y = [y(1), . . . ,y(S)]
correspond to the S outputs and the rows to the N obser-
vations. The columns of the N × S matrix R correspond
to the residuals.

The MLM is a two-step method designed to

1) reconstruct the mapping existing between input
and output distances;
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2) estimating the response from the configuration of
the output points.

In the following, the two steps are discussed.

1) Distance regression: For a selection of reference in-
put points R = {mk}Kk=1 with R ⊆ X and corresponding
outputs T = {tk}Kk=1 with T ⊆ Y , define Dx ∈ R

N×K

in such a way that its kth column contains the distances
d(xi,mk) between the N input points xi and the kth refer-
ence point mk. Analogously, define Δy ∈ R

N×K in such a
way that its kth column contains the distances δ(yi, tk)
between the N output points yi and the output tk of
the kth reference point. The mapping g between the input
distance matrix Dx and the corresponding output distance
matrix Δy can be reconstructed using the multiresponse
regression model

Δy = g(Dx) +E.

The columns of the matrix Dx = [d(x,m1), . . . , d(x,mK)]
correspond to the K input vectors and the columns of the
matrix Δy = [δ(y, t1), . . . , δ(y, tK)] correspond to the K
response vectors, the N rows correspond to the observa-
tions. The columns of the N ×K matrix E correspond to
the K residuals.

Assuming that mapping g between input and output
distance matrices has a linear structure for each response,
the regression model has the form

Δy = DxB+E. (1)

The columns of the K×K regression matrix B correspond
to the coefficients for the K responses. The matrix B
can be solved from data through a minimization of the
multivariate residual sum of squares as loss function:

RSS(B) =

K∑
k=1

N∑
i=1

(
δ(yi, tk)− gk(d(xi,mk))

)2

(2a)

= tr
(
(Δy −DxB)′(Δy −DxB)

)
(2b)

Under the normal conditions where the number of equa-
tions in Equation 1 is larger to the number of unknowns,
the problem is overdetermined and, usually, with no so-
lution. This corresponds to the case where the number
of selected reference points is smaller than the number of
available points available (i.e., K < N). In this case, we
have to rely on the approximate solution provided by the
usual least squares estimate of B,

B̂ = (D′xDx)
−1D′xΔy. (3)

If in Equation 1 the number of equations equals the
number of unknowns (i.e., K = N because all the learning
points are also reference points), then the problem is
uniquely determined and, usually, with a single solution:

B̂ = (Dx)
−1Δy. (4)

Clearly less interesting is the case where in Equation 1
the number of equations is smaller than the number of
unknowns (i.e., for K > N , corresponding to the situation
where, after selecting the reference points, only a smaller
number of learning points is used). This case leads to an

underdetermined problem with, usually, infinitely many
solutions.

Given the possibility for B to be either uniquely solv-
able (Equation 4) or be estimated (Equation 3), for an
input test point x ∈ R

D whose distances from the K
reference input points {mk}Kk=1 are collected in the vec-
tor d(x, R) = [d(x,m1) . . . d(x,mK)], the corresponding
distances between its unknown output y and the known
outputs {tk}Kk=1 of the reference points is

δ̂(y, T ) = d(x, R)B̂. (5)

The vector δ̂(y, T ) = [δ̂(y, t1) . . . δ̂(y, tK)] provides an
estimate of the geometrical configuration of y and the
reference set T , in the Y-space.

ŷ

tk

t1

t2

t3

Y(1)

Y(2)

δ̂(y, tk)
δ̂(y, t2)

δ̂(y, t3)
δ̂(y, t1)

Fig. 1. Output estimation.

2) Output estimation: The problem of estimating the
output y, given the outputs {tk}Kk=1 of all the reference
points and an estimate δ̂(y, T ) of their mutual distances,
can be understood as a multilateration [6] problem to
estimate its location in Y. The problem of locating y is
equivalent to solve the overdetermined set of nonlinear
equations corresponding to (S + 1)-dimensional hyper-
spheres centered in tk and passing through y, that is with
a radius equal to δ̂(y, tk):

(y − tk)
′(y − tk) = δ̂2(y, tk), ∀k = 1, . . . ,K. (6)

The problem in (6) can be formulated as an optimiza-
tion problem, then an estimate ŷ can be obtained by the
following minimization:

ŷ = argmin
y

K∑
k=1

(
(y − tk)

′(y − tk)− δ̂2(y, tk)
)2

. (7)

The objective has a minimum equal to 0 that can be
achieved if and only if y is the solution of (6). If it exists,
such a solution is global and unique. Due to the uncertainty
introduced by the estimates δ̂(y, tk), an optimal solution
to (7) can still be achieved using standard gradient descent
methods. In the following, Levenberg-Marquardt (LM)
method [7] is used throughout the experiments.

The MLM method for training and testing are sketched
in Algorithm 1 and 2, respectively.
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Algorithm 1 MLM training procedure

Input: Training data sets X and Y , and K.
Output: B̂, R and T .

1. Randomly select K reference points, R, from X and their
corresponding outputs, T , from Y ;
2. Compute Dx: The distance matrix between X and R;
3. Compute Δy: The distance matrix between Y and T ;
4. Calculate B̂ = (D′xDx)

−1D′xΔy.

Algorithm 2 MLM test procedure

Input: B̂, R, T and x.
Output: ŷ.

1. Compute d(x, R);
2. Compute δ̂(y, T ) = d(x, R)B̂;
3. Use T and δ̂(y, T ) to find an estimate for y. This can be
accomplished by any gradient descent algorithm over the cost
function in Eq. 7.

B. Parameters and computational complexity

Hyper-parameters: On the basis of the aforementioned
overview, the number of reference points K is virtually
the only hyper-parameter that the user needs to select in
order to optimize a Minimal Learning Machine. As always,
a selection based on conventional validation or on standard
resampling methods for cross-validation could be adopted
for the task.

Two figures of merit are considered for selecting K,
the Average Mean Squared Error for the output distances
(AMSE(δ)) and the Average Mean Squared Error for the
responses (AMSE(y)):

AMSE(δ) =
1

K

K∑
k=1

1

Nv

Nv∑
i=1

(δ(yi, tk)− δ̂(yi, tk))
2(8)

AMSE(y) =
1

S

S∑
s=1

1

Nv

Nt∑
i=1

(y
(s)
i − ŷ

(s)
i )2 (9)

For a set of Nv validation points (xi,yi), the AMSE(δ)
quantifies how well the distances δ(yi, tk) between the Nv

output responses yi and the outputs of the K selected ref-
erence points tk are estimated δ̂(yi, tk), after the distance
regression step of the MLM and before the estimation
is even performed. The AMSE(y), on the other hand
is only performed after both the distance regression and
the estimation steps of the MLM are completed and thus
it quantifies how well the S-dimensional outputs y

(s)
i are

estimated ŷ
(s)
i . In the case of univariate responses (S = 1)

the AMSE(y) reduces to the conventional Mean Square
Error for the outputs (MSE(y)).

Computational Complexity: The Minimal Learning Ma-
chine training computation can be roughly decomposed
into two steps: i) calculations of the pairwise distance
matrices in the output and input space; ii) calculation
of the least-square solution for the multiresponse linear
regression problem on distance matrices (see Eq. 3).

The first procedure takes Θ(KN) time, see [8] for a
review of algorithmic asymptotic analysis. The computa-
tional cost of the second step is driven by the calculation

of the Moore-Penrose pseudoinverse matrix. One of the
most used method for the task is the SVD [9], which runs
in Θ(K2N) time. This method is very accurate but its
drawback relies in the computational time constants that
makes the method time-intensive. Several methods have
been proposed in order to speed up the computation of the
Moore-Penrose matrix (for example, see [10], [11]). In [10],
the computation is optimized by using a special type of
tensor product and QR factorization whereas the method
proposed in [11] is based on a full-rank Cholesky decom-
position. In spite of such approaches improve significantly
the computational time of computing the Moore-Penrose
inverse matrix, the time complexity is still equal to that
provided by the SVD method. Even though, one might
consider them for large datasets and real-time applications.

The time complexity of the MLM training phase is
driven by the computation of the Moore-Penrose matrix
and then it is given by Θ(K2N). In order to establish
a comparison, the MLM training computational cost is
similar to what presented by an Extreme Learning Ma-
chine when the number of hidden neurons is equal to the
number of reference points. It is worthy to notice that the
ELM is considered one of the fastest methods for nonlinear
regression and classification tasks [12].

Concerning the computational analysis of the gener-
alization step in a MLM, we consider the Levenberg-
Marquardt method due to its fast and stable convergence,
even though any gradient descent method can be used
on the minimization step in Eq. 7. For each iteration,
the LM method involves the computation of the Jacobian
matrix and its inverse. In this regard, the computational
complexity of the LM algorithm is about Θ(S3), where S is
the dimensionality of y. In most of the regression and clas-
sification problems, S is a small number and then the cost
function evaluation (Eq. 7) is the most computationally
demanding operation and it is proportional to the number
of reference points.

III. The Minimal Learning Machine for

classification

An important class of problems is classification, where
we are concerned about predicting categories usually de-
noted by qualitative outputs, also called class labels. For
the task, we are still given a set of N input points X =
{xi}Ni=1, with xi ∈ R

D, and the set of their corresponding
class labels L = {li}Ni=1, with li ∈ {C1, . . . , CS}, where Cj

denotes the j-the class; for S = 2, the problem is referred to
as binary classification, whereas for S > 2 we have multi-
class applications.

The Minimal Learning Machine can be extended to
classification problems in a straightforward manner by rep-
resenting the S class labels in a vectorial fashion through
an 1-of-S encoding scheme. In such approach, a S-level
qualitative variable is represented by a vector of S binary
variables or bits, only one of which is on at a time.
Mathematically, the set of outputs Y = {yi}Ni=1, with
yi ∈ R

S , that corresponds to the input points X is then
defined in such a way that the jth-component of yi is
set to α if li = Cj and β otherwise, where α and β are
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Fig. 2. The Tai Chi example.

integer scalars such as α > β. An usual choice is α = 1
and β = −1.

In classification of a test observation x with unknown
class label l ∈ {C1, . . . , CS}, the estimated class l̂ associ-
ated to the output estimate ŷ is given by l̂ = Cs∗ , where

s∗ = argmax
s=1,...,S.

{ŷ(s)}. (10)

As one can easily notice, for binary classification prob-
lems, we may simplify the approach by using a binary
single output scheme where the outputs are represented by
scalars yi ∈ {α, β} in correspondence to the two classes.

Given this formulation, the Minimal Learning Machine
provides unified implementation for regression, binary and
multi-class applications.

A. An illustrative example

In this section, we illustrate the Minimal Learning Ma-
chine and its properties on a classification example, the Tai
Chi symbol. For the task, we generated 213 bidimensional
input points uniformly distributed in the Tai Chi symbol,
and after assigning the class labels to the Yin an Yang
areas we purposely mislabeled 10% of the observations,
Figure 2(a). Half of the whole dataset is used for learning
and the 212 remaining samples are used for validation
purposes. The performance of the MLM is analyzed for a
number N of learning points and a number K of randomly
selected reference points in {21, 22, . . . , 212}. Moreover, for
each size N of the learning set, we always selected a
number K of reference points such that K ≤ N .

We evaluate the MLM on the validation set using
the two figures of merit for selecting K; the AMSE(δ)

and AMSE(y). In our experiments, Minimal Learning
Machines are trained with all the different N -sized learning
sets and for all possible number of reference points. That
is, for each size N of the learning set, the accuracies of
the distance regression and the output estimation steps
are depicted for a varying number K of reference points.

Figure 2(b) shows the results regarding the AMSE(δ),
where for a given number of learning points, the model
achieving the best performance is denoted by a red dot.
A red circle is used to denote the model with the overall
smallest AMSE(δ). Figure 2(c) show the accuracies of the
best performing models per size of the learning set. One
might observe that such accuracies improve as the number
of learning points increases, that is not the case for the
number of reference points since the best model overall
has K = 28. Figure 2(d) shows the results with respect to
the AMSE(y), where again the best performing models
are denoted by red dots, and a red circle denotes the best
model overall. Equally, Figure 2(e) show the accuracies of
the best models for each learning set.

It is worth noticing that in both distance regression
and output estimation steps, the optimal combination for
N and K is the same: N = 212 and K = 28. Given such
behavior we suggest to select K based on the distance
regression step and thus avoiding the need to also perform
the optimization.

To assign a visual evaluation on the regression step, we
report in Figures 2(f) and 2(g) the actual and estimated
pairwise output distance matrices respectively, where it is
possible to notice that such distances are correctly recon-
structed and the overall structure ofΔy is preserved in Δ̂y.
With respect to the estimation step, Figure 2(h) shows the
estimated classes in validation using the best model; the
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TABLE I. Test performance: accuracies (%), the corresponding standard deviations and t-test results (� for accept, ×
for reject and p-values). For each dataset, the best performing models are in boldface.

Datasets Models
MLM ELM OPELM SVM GP MLP

Wisconsin B. C. 97.7 95.6 91.6 91.6 97.3 96.6
0.6 1.2 1.7 1.7 0.9 1.9

× (3e-4) ×(2e-4) ×(2e-9) �(.30) ×(4e-3)
Pima I. D. 74.2 72.2 74.9 72.7 76.3 75.2

1.7 1.9 2.4 1.5 1.8 1.9
×(.02) �(.45) �(.05) ×(.02) �(.25)

Iris 95.0 72.2 95.0 95.4 95.6 94.8
1.4 1.0 2.1 1.9 2.3 3.8

×(1e-6) �(1) �(.60) �(.49) �(.88)
Wine 99.0 81.8 90.7 95.8 96.2 96.0

1.2 6.2 4.9 2.9 2.1 2.4
×(8e-8) ×(5e-5) ×(4e-3) ×(e-3) ×(2e-3)

accuracy is 88%. Interestingly, the error tends to the the
percentage of mislabeled data, then corresponding to an
effective model that does not suffer from overfitting.

IV. Experiments

In this section, we present the results achieved by the
Minimal Learning machine on four real-world datasets
commonly used for benchmarking purposes in classifica-
tion. The performance of the MLM is then compared to
what achieved with five other reference methods: The Ex-
treme Learning Machine (ELM, [4]), the Optimally Pruned
ELM (OP-ELM [12]), the Support Vector Machine (SVM,
[2]), Gaussian Processes (GP, [3]) and the MultiLayer
Perceptron (MLP, [1]).

The datasets are available from the Univer-
sity of California at Irvine (UCI) Repository
(www.ics.uci.edu/∼mlearn/). The datasets used in
the experiments consist of both binary and multi-class
problems and they are: 1) Wisconsin Breast Cancer (30
inputs, 2 classes, 569 samples); 2) Pima Indians Diabetes
(8 inputs, 2 classes, 768 samples); 3) Iris (4 inputs, 3
classes, 150 samples) and 4) Wine (13 inputs, 3 classes,
178 samples). All the datasets have been preprocessed in
the same way. Ten different random permutations of the
whole dataset are taken, and two thirds are used to create
the training set and the remaining for the test set. Then,
the training set is normalized to zero mean and unit
variance, and the test set is normalized using the same
mean and variance from the training set. The proportions
of the classes are kept balanced: each class is represented
in an equal proportion, in both training and test sets.

The hyper-parameters for the SVM and the MLP are
selected using 10-fold cross-validation. The SVM is learned
using the SVM toolbox [13] with default settings for the
hyper-parameters and grid search: the grid is logarith-
mic between 2−2 and 210 for each hyper-parameter and
radial basis function kernel. The MLP is trained using
the Levenberg-Marquardt optimization and a range of
hidden units from 1 to 20. The learning of GP is based
on the default settings in the Matlab Toolbox [3]. The
ELM and OP-ELM have been validated using sigmoid,
gaussian and linear kernels, and a maximum number of
100 hidden units. As for the Minimal Learning Machine,
the only hyper-parameter of the method (the number K

of reference points) has also been selected through 10-fold
cross-validation, for a K ranging from 5% to 100% (with
a step size of 5%) of the available training samples.

In order to evaluate the MLM performance for clas-
sification problems, the mean success classification rate
and the corresponding standard deviations for ten different
dataset permutations. In addition, objecting to compare
the accuracy achieved by the MLM to all the other
methods from a statistical point of view, we carried out
the two-sample t-test. The null hypothesis corresponds to
independent gaussian random variables with equal means
and equal but unknown variances. The results are reported
in Table I.
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Fig. 3. Box-plots of models accuracies.

From Table I we can observe that the MLM exhibits
an equivalent or even better generalization performance in
comparison to the other models. Moreover, the MLM has
shown a stable performance since its standard deviations
are smaller than that of the other methods specially on
the Wisconsin B. C. and Wine datasets. The accuracies
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for all the methods and datasets are shown through box-
plots in Figure 3. Based on the hypothesis tests, the GP
again achieved results quite similar to those from MLM
and it is represented by the equivalence for three datasets:
Wisconsin B. C., Pima I. D. and Iris. Concerning the Wine
dataset, the MLM is the best performing model, since it
has smallest accuracy value and the null hypotheses were
rejected for all the models.

As one can notice, the MLM performance is quite sim-
ilar to those state-of-the-art methods. Then, the computa-
tional complexity takes an important role in the decision
making process of selecting the most appropriate method.
In this regard, an essential aspect for a fast MLM training
is the number of reference points, or more specifically, we
are interested in the property that the optimal number
of reference points does not grow at the same rate of the
number of learning points (dataset size). Thus, to illustrate
such property we report in Figure 4 the normalized MSE
(NMSE) per number of reference points in the cross-
validation process.
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Fig. 4. Validation results: error per number of reference points.
Legends also contain the total number of training samples.

From Figure 4, our experiments have shown that it is
not needed as many reference points as learning points,
specially for the Pima Indians Diabetes data. For all
datasets, 20% of the number of learning points has pro-
vided a good threshold for selecting K.

V. Conclusions

This work overviews a new supervised learning method,
the Minimal Learning Machine, MLM. Learning a MLM
consists in reconstructing the mapping existing between
input and output distance matrices and then exploiting
the geometrical arrangement of the output points for
estimating the response. Based on our experiments, a mul-
tiresponse linear regression model is capable to reconstruct
the mapping existing between the aforementioned distance
matrices. The MLM has only one hyper-parameter to be
optimized using standard resampling methods, like LOO
cross-validation. Given its general formulation, the Mini-
mal Learning Machine is also inherently capable to operate

on multidimensional responses and it can be extended to
classification problems in a straightforward fashion.

On a large number of synthetic and real-world prob-
lems, the Minimal Learning Machine has achieved accura-
cies that are comparable to what is obtained using state-
of-the art classification methods. For compactness, we have
reported the performances on a selection of four datasets
from the UCI Repository and comparisons with five refer-
ence approaches. The results highlight the potentiality of
the MLM on classification tasks.
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