Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70725
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza Júnior, Amauri Holanda de-
dc.contributor.authorCorona, Francesco-
dc.contributor.authorMiché, Yoan-
dc.contributor.authorLendasse, Amaury-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T17:18:48Z-
dc.date.available2023-02-09T17:18:48Z-
dc.date.issued2013-
dc.identifier.citationBARRETO, G. A. et al. Extending the minimal learning machine for pattern classification. In: BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE, 11., 2013, Ipojuca. Anais... Ipojuca: IEEE, 2013. p. 236-241.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70725-
dc.description.abstractThe Minimal Learning Machine (MLM) has been recently proposed as a novel supervised learning method for regression problems aiming at reconstructing the mapping between input and output distance matrices. Estimation of the response is then achieved from the geometrical configuration of the output points. Thanks to its comprehensive formulation, the MLM is inherently capable of dealing with nonlinear problems and multidimensional output spaces. In this paper, we introduce an extension of the MLM to classification tasks, thus providing a unified framework for multiresponse regression and classification problems. On the basis of our experiments, the MLM achieves results that are comparable to many de facto standard methods for classification with the advantage of offering a computationally lighter alternative to such approaches.pt_BR
dc.language.isoenpt_BR
dc.publisherBrazilian Congress on Computational Intelligencept_BR
dc.titleExtending the minimal learning machine for pattern classificationpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_eve_gabarreto.pdf1,02 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.