Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70725
Tipo: | Artigo de Evento |
Título: | Extending the minimal learning machine for pattern classification |
Autor(es): | Souza Júnior, Amauri Holanda de Corona, Francesco Miché, Yoan Lendasse, Amaury Barreto, Guilherme de Alencar |
Data do documento: | 2013 |
Instituição/Editor/Publicador: | Brazilian Congress on Computational Intelligence |
Citação: | BARRETO, G. A. et al. Extending the minimal learning machine for pattern classification. In: BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE, 11., 2013, Ipojuca. Anais... Ipojuca: IEEE, 2013. p. 236-241. |
Abstract: | The Minimal Learning Machine (MLM) has been recently proposed as a novel supervised learning method for regression problems aiming at reconstructing the mapping between input and output distance matrices. Estimation of the response is then achieved from the geometrical configuration of the output points. Thanks to its comprehensive formulation, the MLM is inherently capable of dealing with nonlinear problems and multidimensional output spaces. In this paper, we introduce an extension of the MLM to classification tasks, thus providing a unified framework for multiresponse regression and classification problems. On the basis of our experiments, the MLM achieves results that are comparable to many de facto standard methods for classification with the advantage of offering a computationally lighter alternative to such approaches. |
URI: | http://www.repositorio.ufc.br/handle/riufc/70725 |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2013_eve_gabarreto.pdf | 1,02 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.