Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70708
Tipo: Artigo de Evento
Título : Predictive modeling and planning of robot trajectories using the self-organizing map
Autor : Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
Fecha de publicación : 2004
Editorial : International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems
Citación : BARRETO, G. A.; ARAÚJO, A. F. R. Predictive modeling and planning of robot trajectories using the self-organizing map. In: INTERNATIONAL CONFERENCE ON INDUSTRIAL, ENGINEERING AND OTHER APPLICATIONS OF APPLIED INTELLIGENT SYSTEMS, 17., 2004, Ottawa. Anais... Ottawa: Springer, 2004. p. 1156-1165.
Abstract: In this paper, we propose an unsupervised neural network for prediction and planning of complex robot trajectories. A general approach is developed which allows Kohonen's Self-Organizing Map (SOM) to approximate nonlinear input-output dynamical mappings for trajectory reproduction purposes. Tests are performed on a real PUMA 560 robot aiming to assess the computational characteristics of the method as well as its robustness to noise and parametric changes. The results show that the current approach outperforms previous attempts to predictive modeling of robot trajectories through unsupervised neural networks.
URI : http://www.repositorio.ufc.br/handle/riufc/70708
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2004_eve_gabarreto.pdf640,83 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.