Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70708
Tipo: | Artigo de Evento |
Título : | Predictive modeling and planning of robot trajectories using the self-organizing map |
Autor : | Barreto, Guilherme de Alencar Araújo, Aluízio Fausto Ribeiro |
Fecha de publicación : | 2004 |
Editorial : | International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems |
Citación : | BARRETO, G. A.; ARAÚJO, A. F. R. Predictive modeling and planning of robot trajectories using the self-organizing map. In: INTERNATIONAL CONFERENCE ON INDUSTRIAL, ENGINEERING AND OTHER APPLICATIONS OF APPLIED INTELLIGENT SYSTEMS, 17., 2004, Ottawa. Anais... Ottawa: Springer, 2004. p. 1156-1165. |
Abstract: | In this paper, we propose an unsupervised neural network for prediction and planning of complex robot trajectories. A general approach is developed which allows Kohonen's Self-Organizing Map (SOM) to approximate nonlinear input-output dynamical mappings for trajectory reproduction purposes. Tests are performed on a real PUMA 560 robot aiming to assess the computational characteristics of the method as well as its robustness to noise and parametric changes. The results show that the current approach outperforms previous attempts to predictive modeling of robot trajectories through unsupervised neural networks. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70708 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2004_eve_gabarreto.pdf | 640,83 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.