
R. Orchard et al. (Eds.): IEA/AIE 2004, LNAI 3029, pp. 1156-1165, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Predictive Modeling and Planning of Robot Trajectories
Using the Self-Organizing Map

Guilherme A. Barreto1 and Aluízio F.R. Araújo2

1 Universidade Federal do Ceará (UFC)
Departamento de Engenharia de Teleinformática

Campus do Pici, Centro de Tecnologia, Fortaleza, CE, Brazil
guilherme@deti.ufc.br

http://www.deti.ufc.br/~guilherme
2 Universidade Federal de Pernambuco (UFPE)

Centro de Informática - CIn
Departamento de Sistemas da Computação

Av. Professor Luís Freire, s/n, Cidade Universitária
50740-540, Recife, PE, Brazil

Recife/PE, Brazil
aluizioa@cin.ufpe.br

Abstract. In this paper, we propose an unsupervised neural network for pre-
diction and planning of complex robot trajectories. A general approach is de-
veloped which allows Kohonen's Self-Organizing Map (SOM) to approximate
nonlinear input-output dynamical mappings for trajectory reproduction pur-
poses. Tests are performed on a real PUMA 560 robot aiming to assess the
computational characteristics of the method as well as its robustness to noise
and parametric changes. The results show that the current approach outper-
forms previous attempts to predictive modeling of robot trajectories through
unsupervised neural networks.

1 Introduction

Prediction of robot trajectories is a recent research topic in the Neural Network lit-
erature [1], [2], [5], [6], [7]. In this context, prediction is understood as the capacity of
an artificial neural network (ANN) to determine the next state (configuration) of robot
with respect to a particular trajectory. The training process of this ANN makes it able
to execute complex robotic control tasks, such as autonomous trajectory planning,
avoidance of obstacles in an environment, and nonlinear predictive control.

The early unsupervised neural approaches to learning robotic trajectories employed
static ANNs [12], [13], i.e., models that are understood as systems without memory.
In this situation, the neural algorithm has to learn a mapping considering input-output
patterns that occur at the same instant of time, such as forward and inverse kinematics.
However, this approach has limited applicability to robotic tasks which require the
learning of both spatial and temporal relationships, such as trajectory planning. Static

Predictive Modeling and Planning of Robot Trajectories 1157

ANNs can also be used to trajectory planning, but in this case, the temporal order of
the trajectory states is not learned by the network itself, but rather predefined by the
robot operator.

This paper presents a neural network model based on the Self-Organizing Map
(SOM) algorithm [10] to predictive modeling of complex robot trajectories. In this
approach, the neural network automatically learns the temporal order of the trajectory
states through associative memory mechanisms. The proposed model is then used to
plan and control trajectories of a real 6-DOF PUMA 560. Moreover, the tests were
also designed to estimate appropriate parameters and to evaluate the model’s robust-
ness to input noise and parametric changes.

The remainder of this paper is organized as follows. A brief summary on the SOM
is presented in Section 2, in which we show how it is used to build static input-output
mappings. In Section 3, a temporal associative schema, which extends the SOM algo-
rithm to learn dynamical mappings, is described. Such a strategy is employed to plan
and control trajectories of the PUMA 560 and the implementation of this method is
discussed in Section 4. Section 5 concludes the paper.

2 Self-Organizing Maps and Dynamic Mappings

The SOM is an unsupervised neural network algorithm developed to learn neighbor-
hood (spatial) relationships of a set of input data vectors. Each neuron i has a weight
vector n

i ℜ∈w with the same dimension of the input vector nℜ∈x , and all neurons
are usually arranged in a two-dimensional array, called output layer. The SOM learn-
ing algorithm can be summarized in two basic steps:

1. Find the winning neuron at time t:)()(minarg)(* ttti ii
wx −=

∀
(1)

2. Then, update the weight vectors: ∆wi(t) = η(t)h(i*, i; t)[x(t) - wi(t)] (2)

where 0 < η(t) < 1 is the learning rate and h(i*, i; t) = exp(-|| ri*(t) - ri ||2 / 2σ2(t)) is a
Gaussian neighborhood function in which ri(t) and ri*(t) denote the positions of the
neurons i and *i in the output array. For the sake of convergence, the parameters η(t)
and σ(t) should decrease in time, for example, in a linear basis: η(t) = η0(1-t/T) and
σ(t) = σ0(1-t/T), where η0 and σ0 are the initial values of η(t) and σ(t), respectively. T
denotes the maximum number of training iterations. Another common choice for the
neighborhood function is the rectangular one (also called bubble): h(i*, i; t) = 1, if i ∈
Vi*(t), and h(i*, i; t) = 0, otherwise. The set Vi*(t) contains all neurons in the neigh-
borhood of the winning neuron i* at time t. As in the Gaussian case, the size of Vi*(t)
should also decay in time for convergence purposes.

The work by [13] extended the SOM network to learn mappings from input-output
pairs of static patterns. Such static mappings are often described by:

))(()(tt ufy = (3)

1158 G.A. Barreto and A.F.R. Araújo

where nt ℜ∈)(u denotes he input vector and mt ℜ∈)(y is the output vector. More
recently, the work by [4] generalized the model of Walter and Ritter in order to en-
code dynamic mappings, such as those described in [9]:

)]1(,),();1(,),([()1(+−+−=+ uy nttnttt uuyyfy KK (4)

where nu and ny are the orders of the input and output memories. Equation (4) indi-
cates that the output at time instant t+1 depends on the ny past outputs and nu past
inputs. Usually, the mapping f(.) is nonlinear and unknown.

In order to establish temporal associations between consecutive patterns in a tem-
poral sequence, neural networks need to retain information about past sequence items
[3]. Such a retention mechanism, called short-term memory (STM), encodes temporal
order and/or temporal dependencies between successive sequence patterns. STM can
be implemented by different strategies, the simplest being the so-called tapped delay
line, understood as a sliding “time window” over the input sequence within which a
number of successive samples are concatenated into a single pattern vector of higher
dimensionality. In the following, we use delay lines as the STM mechanism to allow
the SOM to learn input-output dynamical mappings.

3 Temporal Associative Memory

In order to approximate f(.), the input and output vectors of a time series {u(t),
y(t)}, t = 1, …, N are organized into a single input vector to presented to the SOM.
The first component of xin(t) represents the actual input information of the mapping
whereas the second piece, xout(t), corresponds to the desired output information of the
same mapping. The input and weights vectors are then redefined as











=

)(
)()(
t
tt out

in

x
xx and 










=

)(
)()(
t
tt out

i

in
i

i w
ww (5)

During the training phase, the winning neurons are found based solely on the input component
of the extended input vector x(t):

)()(minarg)(* ttti in
i

in
i

wx −=
∀ (6)

However, the weight updates consider both parts of the input vector:

)]()()[;*,()()(tttiihtt in
i

in
i

in
i wxw −=∆ η (7)

)]()()[;*,()()(tttiihtt out
i

out
i

out
i wxw −=∆ η (8)

Predictive Modeling and Planning of Robot Trajectories 1159

(a) (b)

Fig. 1. Difference between (a) supervised and (b) unsupervised (MATQV) learning of input-
output mappings.

Thus, by means of Equations (5)-(8) the SOM model learns to associate the input signals
with the output ones, while simultaneously performing vector quantization of the input and
output spaces. Bearing that in mind, this technique is called Vector Quantized Temporal Asso-
ciative Memory (VQTAM). The VQTAM may be used for approximating different types of
mapping depending on the nature of the vectors xin(t) and xout(t). For example, the VQTAM
formulation of the system defined in Equation (4) is given by

T
uy

in nttnttt)]1(,),();1(,),([)(+−+−= uuyyx KK and)1()(+= ttout yx (9)

Once the mapping is learned, the VQTAM may be used to estimate the output val-
ues of this mapping by the equation stated below

)()1(ˆ * tt out
iwy =+ (10)

where the winning neuron i*(t) is determined as in Equation (6). The prediction process is
repeated M times until a time series of estimated values is available.

Training the VQTAM is characterized by simultaneous presentation of the vectors
xin(t) and xout(t) and the absence of an explicit computation of an error signal (Fig. 1b).
On the other hand, a supervised learning algorithm, such as those used in RBF and
MLP networks, employ an error to guide the training, so that only the vector xin(t) is
used as input of the network and the vector xout(t) is the desired output (Fig. 1a)
needed to compute the error.

3.1 Predictive Modeling of Robot Trajectories

The VQTAM makes it possible to learn and to reproduce complex mappings, such as
those responsible for the generation of robot trajectories. In particular, the focus of
this study is the prediction of joint angles associated with a given robot trajectory of
the 6-degree-of-freedom PUMA 560 robot, and their posterior reproduction for tra-
jectory planning purposes. Let the vector Tttt)]()([)(61 θθ K=θ represent the vector
of joint angles at time t. In this context, Equation (4) reduces to

1160 G.A. Barreto and A.F.R. Araújo

)]1(,),([()1(+−=+ θnttt θθfθ K (11)

where nθ is the model order, also called memory parameter. This formulation allows
the SOM to learn the kinematics of the manipulator while simultaneously encoding the
temporal order of the trajectory states. In this case, the vectors xin(t) and xout(t) are the
following:

Tin nttt)]1(,),([)(+−= θθθx K and)1()(+= ttout θx (12)

where the determination of the winning neuron follows Equation (9) and the weight
adjustments are determined by Equations (10) and (11). The estimate for the next
vector of joint angles is then given by

)()1(ˆ
* tt out

iwθ =+ (13)

Such an estimate can then used as setpoint for autonomous planning and control of
the manipulator (Fig. 2). In the experiment to be described in the next section, the
robot operator defines the initial state of the trajectory for 0=t , and the neural net-
work generates the next state. Such a state is sent to the robot that moves itself to the
desired position. The new configuration of the joints of the PUMA is then measured
and fed back to the network that produces the next state. This procedure is repeated
until the end of the trajectory is reached. Due to the inherent perturbations, very often
the robot moves to a neighborhood of the target position, thus the neural networks has
to be robust to these perturbations. That is, the generated responses should be stable,
i.e., close enough to the states of the learned trajectory.

It is also worth emphasizing the differences between the predictive approach to
autonomous trajectory planning and the conventional look-up table method [11]. Usu-
ally, a trajectory is taught to the robot by the well-known walk-through approach: the
operator guides the robot by means of a teach-pendant through the sequence of desired
arm positions [8]. These positions are then stored for posterior reproduction. This is a
time-consuming approach and costly because the robot remains out of production
during the teaching stage.

As the trajectory becomes more and more complex, with many intersecting via
points, the operator may experience difficulties while setting up the correct temporal
order of the trajectory points. This is the main motivation for the proposal of the neu-
ral model described in this paper, since it is highly desirable to have the teaching pro-
cess with minimal human intervention. In the proposed approach, the responsibility of
learning the temporal order of the trajectory is transferred to the neural network and,
once training is completed, the stored trajectory can be used for autonomous trajectory
planning, as depicted in Fig. 2.

Predictive Modeling and Planning of Robot Trajectories 1161

Fig. 2. Autonomous reproduction of a learned trajectory.

Another important issue is the role of the feedback path in Fig. 2, which allows the
neural network to work autonomously, performing on a step-by-step basis the repro-
duction (planning) of the stored trajectory. This is important for safety purposes, since
a trajectory only continues to be reproduced is the feedback pathway exists. Thus, if
any problem occurs during the execution of the required motion by the robot, such
collision with an obstacle or the joints reach their limiting values, the feedback path-
way can be interrupted and the reproduction is automatically stopped.

The conventional walk-through method does not possess the feedback pathway. In
this case, all the trajectory states are sent to a memory buffer and executed in batch-
mode. If any problem occurs, one has to wait for the execution of the whole trajectory
in order to take a decision or to turn-off the robot power. Another important property
of the VQTAM approach is its greater robustness to noise, as we show next through
comparisons with a predictive variant of the lookup table method.

4 Tests with the VQTAM Model

The tests to be presented next evaluate the performance of the proposed method in the
tasks of learning and reproduction (planning) of robot trajectories. The following
issues will be assessed: accuracy of the retrieved trajectory, influence of the memory
parameter (nθ), influence of the type of neighborhood function, and tolerance of the
model to noisy inputs. For this purpose, four trajectories whose pathways approxi-
mately describe an eight in 3D Euclidean space were generated by moving the robot
through its workspace, each trajectory containing 9 states. This type of trajectory has
been used as a benchmark for testing neural learning of robot trajectories because it
has a repeated (crossing) via point. Thus, the reproduction of the stored trajectory
states in the correct temporal order depends on temporal context information, which is
represented by the parameter nθ .

The proposed approach was implemented in C++ using the PUMA 560 control li-
brary QMOTOR/QRTK©, developed by Quality-Real Time Systems, running on a PC
under the QNX real-time operating system. More details about the data acquisition
processes and the interfacing hardware can be found at http://www.qrts.com and
http://www.qnx.com.

The accuracy of the reproduction is evaluated by the Normalized Root Mean
Squared Error (NRMSE), given by:

1162 G.A. Barreto and A.F.R. Araújo

(a) (b)

Fig. 3. Influence of the memory on trajectory reproduction: (a) nθ ≥ 2 and (b) nθ =1.

∑∑
= =

−=
d sN

t

N

k
ii

sd
kk

NN
NRMSE

1 1

2)](ˆ)([
.
1 θθ (14)

where Nd is the number of joints of the robot, Ns is the number of states of the trajec-
tory,)(kiθ is the desired value of joint i at time k and)(ˆ kiθ is the retrieved value of
joint i at time k. The first test demonstrates the ability of the model in retrieving the
stored trajectory states in the correct temporal order. We show only the results for one
trajectory, since similar results are observed for the other three. A SOM model with 50
neurons was trained with the following parameters: η0 = 0.9, σ0 = 25, nθ = 2, T =
5000, Nd = 6 and Ns = 9. A correct reproduction is illustrated in Fig. 3a, where the
number at the upper right corner of each subfigure denotes the position in time of that
state of the robot arm and the open circle denote the position of the end-effector. An
incorrect reproduction occurs if we use nθ = 1 (no memory!) as shown in Fig. 3b. In
this case, the robot is unable to retrieve the whole trajectory, only half of it.

It is interesting to understand why the minimum value of nθ is 2. This is equivalent
to say that, to decide which route to follow, the neural network needs to have infor-
mation about the current and the last state of the trajectory . This requirement can be
easily understood if one notes that, to enter into one half of the trajectory the current
state θ(t) must be the crossing (bifurcation) via point and the last state θ(t-1) must be
in the other half of the trajectory. This is the minimum memory ``window´´ needed to
reproduce the trajectory without ambiguity.

Fig. 4a shows the evolution of the NRMSE values as a function of memory pa-
rameter. It can be noted that for nθ = 1, the error is very high and that from nθ ≥ 2 on,
the error remains practically the same, confirming the result shown in Fig. 3b.

Predictive Modeling and Planning of Robot Trajectories 1163

(a) (b)

Fig. 4. (a) NRMSE versus memory order. (b) NRMSE versus noise variance.

The next set of tests evaluates the proposed model with respect to the presence of
noise in the input vectors and the corresponding effects on the trajectory reproduction.
Many tests were performed by adding Gaussian white noise, with zero mean and in-
creasing variance σ2, to the input vector. For each value of σ2, we computed the
NRMSE associated to the retrieved trajectory states, as shown in Fig. 4b.

One can note that the error increases gradually with the increase of the noise vari-
ance, even for very high values of σ2, which is a direct consequence of the fact of
using much more neurons than trajectory states. This occurs due to the topology pre-
serving property of the SOM algorithm, i.e., neurons that are neighbors in the array
have close (similar) weight vectors. Thus, a noisy input vector will be mapped onto
neurons in the neighborhood of that neuron which would be the winner for the noise-
free case. The resulting error is just slightly higher than the noise-free case.

The last test studies the influence of the choice of a neighborhood function h(i*, i;
t) on the numerical accuracy of the reproduction. Two SOM networks were trained for
different numbers of training epochs, one with a Gaussian and the other with a rectan-
gular neighborhood function. The results are shown in Fig. 5. From Fig. 5a one can
conclude that the rectangular neighborhood always provided lower values for the
error. The effect on the retrieved joint angles is illustrated in Fig. 5b, where the re-
trieved angles of the robot base joint are shown for both types of neighborhood func-
tions. From the exposed, it is recommended the use of the rectangular neighborhood
function for two reasons, namely, (1) better accuracy and (2) lower computational
cost.

Finally, we discuss the main differences of the model proposed in this paper and
the CTH model. The CTH was the first entirely unsupervised neural algorithm applied
to trajectory planning and point-to-point control of robotic manipulators, being tested
by computer simulations in [2] and by implementation on a real PUMA 560 robot in
[5]. The CTH has been applied to predictive modeling of robot trajectories, but it uses
different learning mechanisms than those used by the VQTAM method.

1164 G.A. Barreto and A.F.R. Araújo

(a) (b)
Fig. 5. (a) NRMSE versus training epochs. (b) Reproduction accuracy for different types of
neighborhood functions.

The main differences are the following:

(i) The CTH uses two sets of weights to learn the temporal order of the states of a
trajectory. The first set, comprised by feedforward competitive weights, stores
the states, while the second, comprised by lateral Hebbian weights, learns the
temporal transitions between consecutive states. The VQTAM needs only feed-
forward competitive weights to realize the same task.

(ii) The CTH algorithm has 6 training parameters to be determined by experimenta-
tion, while the VQTAM uses only two parameters: the learning rate and decay
rate of the width of the neighborhood function.

(iii) The VQTAM is more tolerant to noise in the inputs because it benefits from the
property of topology preservation of the SOM to produce errors that increase
smoothly with the variance of the noise.

5 Conclusions

We introduced a self-supervised neural for prediction and planning of complex robot
trajectories. The proposed technique extends Kohonen´s SOM so that it can learn
dynamical input-output mappings for trajectory planning purposes. Several tests were
carried out using a real PUMA 560 robot, aiming to evaluate the computational prop-
erties of the proposed model, such as robustness to noise, influence of the memory
order on the model’s performance, and the influence of the type of neighborhood
function on the accuracy of the model. The obtained results have shown that the pro-
posed approach performs better the current methods.

Acknowledgments. The authors thank CNPq (DCR:305275/2002-0) and FAPESP
(Processes #00/12517-8 and #98/12699-7).

Predictive Modeling and Planning of Robot Trajectories 1165

References

[1] Althöfer, K. and Bugmann, G. (1995). Planning and learning goal-directed sequences of
robot arm movements, in F. Fogelman-Soulié and P. Gallinari (eds), Proc. Int. Conf. on
Artificial Neural Networks (ICANN), Vol. I, pp. 449–454.

[2] Araújo, A. F. R. and Barreto, G. A. (2002). A self-organizing context-based approach to
tracking of multiple robot trajectories, Applied Intelligence, 17(1):99-116.

[3] Barreto, G. A. and Araújo, A. F. R. (2001). Time in self-organizing maps: An overview of
models, International Journal of ComputerResearch 10(2): 139–179.

[4] Barreto, G. A. and Araújo, A. F. R. (2002). Nonlinear modelling of dynamic systems with
the self-organizing map, Lecture Notes in Computer Science, 2415:975-980.

[5] Barreto, G. A., , Dücker, C. and Ritter, H. (2002). A distributed robotic control system
based on a temporal self-organizing network, IEEE Transactions on Systems, Man, and
Cybernetics-Part C 32(4): 347–357.

[6] Bugmann, G., Koay, K. L., Barlow, N., Phillips, M. and Rodney, D. (1998). Stable en-
coding of robot trajectories using normalised radial basis functions: Application to an
autonomous wheelchair, Proc. 29th Int. Symposium on Robotics (ISR), Birmingham, UK,
pp. 232–235.

[7] Denham, M. J. and McCabe, S. L. (1995). Robot control using temporal sequence learn-
ing, Proc. World Congress on Neural Networks (WCNN), Vol. II, Washington DC, pp.
346–349.

[8] Fu, K., Gonzalez, R. and Lee, C. (1987). Robotics: Control, Sensing,Vision, and Intelli-
gence, McGraw-Hill.

[9] Hunt, K. J., Sbarbaro, D., Zbikowski, R. and Gawthrop, P. J. (1992). Neural networks for
control systems – A survey, Automatica 28(6): 1083–1112.

[10] Kohonen, T. (1997). Self-Organizing Maps, 2nd extended edn,Springer-Verlag, Berlin.
[11] Raibert, M. H. and Horn, B. K. P. (1978). Manipulator control using the configuration

space method, The Industrial Robot 5: 69–73.
[12] Ritter, H., Martinetz, T. and Schulten, K. (1992). Neural Computation and Self-

Organizing Maps: An Introduction, Addison-Wesley, Reading, MA.
[13] Walter, J. and Ritter, H. (1996). Rapid learning with parametrized self-organizing

maps, Neurocomputing 12: 131–153.

	1 Introduction
	2 Self-Organizing Maps and Dynamic Mappings
	3 Temporal Associative Memory
	3.1 Predictive Modeling of Robot Trajectories

	4 Tests with the VQTAM Model
	5 Conclusions

