Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70708
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.contributor.author | Araújo, Aluízio Fausto Ribeiro | - |
dc.date.accessioned | 2023-02-09T16:50:36Z | - |
dc.date.available | 2023-02-09T16:50:36Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | BARRETO, G. A.; ARAÚJO, A. F. R. Predictive modeling and planning of robot trajectories using the self-organizing map. In: INTERNATIONAL CONFERENCE ON INDUSTRIAL, ENGINEERING AND OTHER APPLICATIONS OF APPLIED INTELLIGENT SYSTEMS, 17., 2004, Ottawa. Anais... Ottawa: Springer, 2004. p. 1156-1165. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70708 | - |
dc.description.abstract | In this paper, we propose an unsupervised neural network for prediction and planning of complex robot trajectories. A general approach is developed which allows Kohonen's Self-Organizing Map (SOM) to approximate nonlinear input-output dynamical mappings for trajectory reproduction purposes. Tests are performed on a real PUMA 560 robot aiming to assess the computational characteristics of the method as well as its robustness to noise and parametric changes. The results show that the current approach outperforms previous attempts to predictive modeling of robot trajectories through unsupervised neural networks. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems | pt_BR |
dc.title | Predictive modeling and planning of robot trajectories using the self-organizing map | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2004_eve_gabarreto.pdf | 640,83 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.