Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70707
Tipo: | Artigo de Evento |
Título : | Approximate linear dependence as a design method for Kernel prototype-based classifiers |
Autor : | Coelho, David Nascimento Barreto, Guilherme de Alencar |
Palabras clave : | Prototype-based classifiers;Sparsification;Approximate linear dependence;Kernel classifiers;Kernel SOM |
Fecha de publicación : | 2019 |
Editorial : | International Workshop on Self-Organizing Maps |
Citación : | COELHO, D. N.; BARRETO, G. A. Approximate linear dependence as a design method for Kernel prototype-based classifiers. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2013. p. 241-250. |
Abstract: | The approximate linear dependence (ALD) method is a sparsification procedure used to build a dictionary of samples extracted from a data set. The extracted samples are approximately linearly independent in a high-dimensional kernel reproducing Hilbert space. In this paper, we argue that the ALD method itself can be used to select relevant prototypes from a training data set and use them to classify new samples using kernelized distances. The results obtained from intensive experimentation with several datasets indicate that the proposed approach is viable to be used as a standalone classifier. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70707 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2019_eve_gabarreto.pdf | 346,58 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.