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Abstract. The approximate linear dependence (ALD) method is a spar-
sification procedure used to build a dictionary of samples extracted from
a data set. The extracted samples are approximately linearly independent
in a high-dimensional kernel reproducing Hilbert space. In this paper, we
argue that the ALD method itself can be used to select relevant proto-
types from a training data set and use them to classify new samples using
kernelized distances. The results obtained from intensive experimenta-
tion with several datasets indicate that the proposed approach is viable
to be used as a standalone classifier.

Keywords: Prototype-based classifiers, sparsification, approximate lin-
ear dependence, kernel classifiers, kernel SOM.

1 Introduction

Kernel-based methods have been introduced with the aim of developing nonlin-
ear versions of linear supervised or unsupervised machine learning algorithms
[7]. The underlying idea is to apply a kernel function k(·, ·) : X × X → R
to any pair of training vectors so that the result can be interpreted as an in-
ner product of a mapping function φ(x), where φ : X → F , and F is a high-
dimensional reproducing kernel Hilbert space (RKHS) (a.k.a. the feature space)
[16]: k(xi,xj) = φ(xi)

Tφ(xj). It should be noted that the nonlinear feature
mapping φ(·) is usually unknown. Thus, by means of the kernel function, inner
products in the feature space are computed implicitly, i.e. without using the fea-
ture vectors directly. This appealing property of kernel methods has then been
referred to as the kernel trick.

The process of kernelization has also been applied to prototype-based algo-
rithms, such as the K-means [12], the self-organizing map (SOM) [10], the neural
gas (NG) network [13] and the learning vector quantization (LVQ) [9], produc-
ing their kernelized versions: the kernel K-means [17], the kernel SOM (KSOM)
[11], the kernel NG (KNG) [14] and the kernel LVQ (KLVQ) [6].

The performances of standard and kernelized versions of prototype-based
classifiers are highly dependent on the number of labeled prototypes. Although



2 David Coelho and Guilherme Barreto

it is possible to make the set of prototypes either adaptive [1] or optimally
determined by means of evolutionary algorithms [15], in the vast majority of the
applications that number is set by trial and error or exhaustive grid search.

Bearing this issue in mind, in this paper we develop a simple design scheme
for building kernelized prototype-based classifiers by means of the approximate
linear dependence (ALD) method, which is a sparsification procedure widely
used in the field of kernel adaptive filtering [5]. The proposed approach auto-
matically selects a dictionary of samples extracted from the original data set.
The dictionary, the size of which is a function of a single scalar parameter, is
then used to classify a new sample using a kernelized nearest neighbor scheme.
A set of experiments with benchmarking data sets confirm the viability of the
proposed approach.

The remainder of this paper is organized as follows. In section 2, the fun-
damentals of prototype-based classification and some kernel-based methods are
briefly reviewed. In section 3, the approximate linear dependence method and
the proposed framework is developed. The simulation results are reported and
discussed in Section 4. The paper is concluded in Section 5.

2 Basics of Prototype-Based Classification

Prototype based algorithms, as SOM and LVQ, learn from samples {(xi, yi) ∈
Rp×{1, ..., C} |i = 1, ..., N} a mapping (projection) from a high-dimensional con-
tinuous input space X onto a low-dimensional discrete spaceA of Q neurons. The
map i∗(x) : X → A, defined by the weight matrix W = {w1,w2, . . . ,wQ},wi ∈
Rp ⊂ X , assigns to each input vector x(n) ∈ Rp ⊂ X a winning prototype
i∗(n) ∈ A, determined by

i∗(n) = arg min
∀i
‖x(n)−wi(n)‖2, (1)

where ‖ · ‖ denotes the Euclidean distance and n symbolizes a discrete time step
associated with the iterations of the algorithm. This function can be kernelized
as

i∗(n) = arg min
∀i
‖φ (x(n))− φ (wi(n))‖2 , (2)

= arg min
∀i

Ji(x(n)),

where Ji(x(n)) can be defined as

Ji(x(n)) = ‖φ(x(n))− φ(wi(n))‖2 , (3)

= (φ(x(n))− φ(wi(n)))T (φ(x(n))− φ(wi(n))),

= φ(x(n))Tφ(x(n)) + φ(wi(n))Tφ(wi(n))− 2φ(x(n))Tφ(wi(n)),

= k(x(n),x(n)) + k(wi(n),wi(n))− 2k(x(n),wi(n)).

The prototype-based algorithms are distinguished by the update rules of their
weight matrices. With the SOM algorithm, all the prototypes are updated by
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the following rule

wi(n+ 1) = wi(n) + η(n)h(i∗, i;n)[x(n)−wi(n)] (4)

where 0 < η(n) < 1 is the learning rate and h(i∗, i;n) is a weighting function
which limits the neighborhood of the winning neuron. On the other hand, in
LVQ1, just the winner prototype is update by the following rule

wi∗(n+ 1) =

{
wi∗(n) + η(n) [x(n)−wi∗(n)] , y(x(n)) = y(wi∗(n))
wi∗(n)− η(n) [x(n)−wi∗(n)] , y(x(n)) 6= y(wi∗(n))

(5)

where y(x(n)) and y(wi∗(n)) are the labels of the sample and the winner pro-
totype respectively.

These updating rules can be also kernelized. In the Energy Function Kernel
SOM (EF-KSOM), for example, the update rule is defined as

wi (n+ 1) = wi (n) + η (n)h (i∗, i, n)∇Ji(x(n)), (6)

where the gradient vector ∇Ji(x(n)) is defined as ∇Ji(x(n)) = ∂Ji(x(n))
∂wi(n)

.

In the next subsection, some functions that can be used as kernels are re-
viewed.

2.1 Kernel Functions

The linear Kernel is the simplest one, where this function’s output is equal to
the dot product of two input vectors. This kernel, for two given vectors, x ∈ Rp

and y ∈ Rp, can be formally defined as

k(x,y) = xTy. (7)

The Gaussian kernel function has the following general form:

k(x,y) = exp

(
−‖x− y‖2

2γ2

)
, (8)

where γ > 0 is a scale parameter (a.k.a. the width parameter, in the current
context). A suitable value for the hyperparameter γ should be carefully tuned to
the problem at hand [4]. If it is overestimated, the exponential behaves almost
linearly and the projection to high-dimensional feature space loses its nonlin-
ear character. If it is underestimated, the function will lack regularization and
decision boundaries tend to become highly sensitive to noise in training data.

The Cauchy kernel function has the following general form:

k(x,y) =

(
1 +
‖x− y‖2

γ2

)−1
, (9)

where γ > 0 is a scale parameter.
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This kernel function is a long-tailed kernel, a term borrowed from Probabil-
ity for denoting distributions in which too small or too large values have large
probability to occur, in contrast to the Gaussian distribution for which values
far from the mean rarely occur. For this reason, the Cauchy kernel can be used
to give long-range influence and sensitivity over the high-dimensional feature
space [4].

The Log kernel function was introduced in [2] and its expression is given by

k(x,y) = − log

(
1 +
‖x− y‖2

γ2

)
, (10)

where log denotes the natural logarithm.
The Log kernel function belongs to a class of “not strictly positive definite”

kernel functions, named conditionally definite positive kernel functions3, which
has been shown anyway to perform very well in many practical applications.

In the next section, the ALD method is briefly described and the proposed
framework is shown.

3 The Proposed Approach

As mentioned, the training method to be proposed is based on the ALD crite-
rion [5], which is a sparsification procedure for the construction of a dictionary
consisting of a subset of the training samples Dt−1 = {x̃j}mt−1

j=1 . The samples
in Dt−1 are approximately linearly independent feature vectors. The goal of the
proposed approach is to take the samples of the dictionary as prototype vec-
tors in feature space, so that they can be used in a kernelized nearest neighbor
classification scheme.

At training time step t (2 ≤ t ≤ N), with N denoting the number of training
samples, after having observed t − 1 training samples, the dictionary Dt−1 is
comprised of a subset of mt−1 relevant training inputs {x̃j}mt−1

j=1 . When a new
incoming training sample xt is available, one must test if it should be added or
not to the dictionary. In order to do this, it is necessary to estimate a vector of

coefficients a =
(
a1, ..., amt−1

)T
satisfying the ALD criterion

δt
def
= min

a

∥∥∥∥∥∥
mt−1∑
j=1

ajφ (x̃j)− φ (xt)

∥∥∥∥∥∥
2

≤ ν, (11)

where ν is the sparsity level parameter. Developing the minimization problem
in Eq. (11) and using κ(x,y) = 〈φ(x),φ(y)〉, we can write

δt
def
= min

a


mt−1∑
i,j=1

aiajκ (x̃i, x̃j)− 2

mt−1∑
i,j=1

ajκ (x̃i,xt) + κ (xt,xt)

 , (12)

3 Let X be a nonempty set. A kernel k(·, ·) is called conditionally positive definite if
and only if it is symmetric and

∑n
j,k cjckk(xj ,xk) ≥ 0, for n ≥ 1, c1, . . . , cn ∈ R

with
∑n

j=1 cj = 0 and x1, . . . ,xn ∈ X .
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or, using the matrix notation,

δt = min
a

{
aT K̃t−1a− 2aT k̃t−1 (xt) + ktt

}
, (13)

where
[
K̃t−1

]
i,j

= κ (x̃i, x̃j),
(
k̃t−1 (xt)

)
i

= κ (x̃i,xt), and ktt = κ (xt,xt), with

i, j = 1, ...,mt−1. Solving (13) leads to the optimal at, given by

at = K̃−1t−1k̃t−1 (xt) , (14)

so that the ALD condition can be rewritten as

δt = ktt − k̃t−1 (xt)
T
at ≤ ν. (15)

If δt > ν, then the sample xt must be added to the dictionary; that is,
Dt = Dt−1∪{xt} and mt = mt−1. However, if δt < ν, the sample is approximate
linear dependent and must not be added to the dictionary.

For the purpose of classification, the ALD-based selection of prototype vec-
tors for the dictionary can be carried out in two very simple ways, which are
described next.

Design Method 1 - Randomly select an initial data sample. This sample will
be the first element of the dictionary. Then, take the remaining samples of the
training data set, one-by-one, and apply the ALD criterion according to (14) and
(15). Note that each prototype vector in Dt = carries its class label for the sake of
classification. The classifier designed by this method will be henceforth referred
to by the acronym KNN-ALD-1 (kernel nearest neighbor via ALD criterion 1).

Design Method 2 - According to this method we have to build one dictionary

per class. For a problem with C classes, it is required C dictionaries D(k)
t , k =

1, 2, . . . , C. For this purpose, apply the Design Method 1 to the data samples of
the k-th class, k = 1, 2, . . . , C. Repeat this procedure for all classes individually.
Merge the class-conditional dictionaries into a single larger dictionary: Dt =

D(1)
t ∪D

(2)
t ∪· · ·∪D

(C)
t . The classifier designed by this method will be henceforth

referred to as the KNN-ALD-2 (kernel nearest neighbor via ALD criterion 2).
For the classification of a new data sample, use the kernelized distance in

Eq. (2) in order to find the closest prototype. The search is executed over the
samples in the dictionary. Assign to that sample, the same class of the nearest
prototype.

It should be noted that the only hyperparameters of the proposed approach
are ν (the sparsity level) and those associated with the chosen kernel function
(as the scale parameter γ). However, since the kernel parameters are common to
all kernel-based methods, the only tunable parameter of the proposed approach
is the sparsity level ν.

4 Results and Discussion

In this section, we report the results of comprehensive computer simulations
verifying the classification performance of the proposed algorithm, with differ-
ent kernels, when applied to real-world datasets. For all the data sets, the z-score
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normalization is used, so that all attributes have zero empirical mean and unit
variance. Moreover, the algorithms were implemented from scratch using MAT-
LAB’s script language and the simulations were run on a HP notebook with 2.70
GHz Intel Core i7 processor, 16 GB of RAM memory and Windows 10 Home
operating system.

4.1 Initial Tests

We start with the iris data set4 to verify how the number of prototypes and the
classifier accuracy change as we modify: the hyperparameters ν and γ, the kernel
functions, and the dictionary build method. This data set contains 3 classes of
50 samples each, where each class refers to a type of iris plant, and each sample
is a vector of 4 attributes.

The results of the proposed method, using the linear kernel are shown at
table 1. As this kernel function does not have an hyperparameter, only the build
method and the sparsity level ν are verified here. We can notice that bigger
values of ν lead to dictionaries with less prototypes, because it becomes harder
to a new sample not be considered approximate linear dependent - see Eq. (15).
For small enough values of ν, all the samples from the training data set will
be chosen as prototypes. Comparing lines 2 and 6 of this table, we can notice
that, with almost the same number of prototypes (12 and 13), higher accuracy
rates are achieved, both in the training and test data sets, by the KNN-ALD-2
classifier. It is important to mention that this quantity of prototypes corresponds
to 12% of the entire training data set.

Table 1. Preliminary tests with Iris data set and linear kernel.

Method ν Kernel γ acc tr acc ts #prototypes #class 1 #class 2 #class 3

KNN-ALD-1 0.001 linear . 0.956 0.905 49 15 13 21

KNN-ALD-1 0.01 linear . 0.867 0.849 12 3 3 6

KNN-ALD-1 0.1 linear . 0.759 0.739 5 1 2 2

KNN-ALD-2 0.001 linear . 0.995 0.936 89 30 30 29

KNN-ALD-2 0.01 linear . 0.942 0.912 30 10 10 10

KNN-ALD-2 0.1 linear . 0.907 0.890 13 4 4 5

When using the Gaussian and Cauchy kernels, as we increase the value of
the scale parameter γ, the number of chosen prototypes decreases. In order to
have good classification performance and few prototypes, both ν and γ should be
optimized. Also, with these kernel functions, the KNN-ALD-2 classifier achived
the best results. These concepts are illustrated in table 2, where some results of
the Gaussian kernel are shown.

Unlike the previously mentioned kernel functions, the number of prototypes
increases as the value of γ also increases. Also, the values for ν should be negative,
as the maximum value of this kernel is zero - see Eq. (10).

4 https://archive.ics.uci.edu/ml/datasets/iris
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Table 2. Preliminary tests with Iris data set and Gaussian kernel.

Build Method v Kernel Type γ acc tr acc ts prototypes class 1 class 2 class 3

1 0.001 Gaussian 20 0.987 0.931 88 30 28 30

1 0.01 Gaussian 20 0.914 0.899 21 7 5 9

1 0.1 Gaussian 2 0.949 0.915 24 7 7 10

2 0.001 Gaussian 20 1 0.932 99 33 32 34

2 0.01 Gaussian 20 0.954 0.909 32 9 10 13

2 0.1 Gaussian 2 0.957 0.917 30 8 10 12

2 0.1 Gaussian 5 0.936 0.911 18 5 5 8

2 0.1 Gaussian 10 0.911 0.882 12 3 4 5

4.2 General Tests

In the following experiments, for each evaluated data set, we test 8 variants of
the proposed algorithm, consisting of 4 different kernel functions (linear, Gaus-
sian, Cauchy, log) and 2 build methods (an unique dictionary or one dictionary
per class). Also, 50 independent training-testing runs are executed. For each
run, three steps are performed, namely: (i) holdout (partition of the data be-
tween training and test sets), (ii) training (hyperparameters optimization and
parameters update), (iii) performance testing. For the holdout step, the data is
randomly divided as follows: 70% for training and remaining 30% for test. At
the end of test phase, several statistical figures of merit for the performance of
each classifier are computed.

Finally, we perform a 5-fold cross-validation strategy in order to search the
optimal values of the hyperparameters ν (from the ALD criterion) and γ (from
the Gaussian, Cauchy and Log kernel functions). The figure of merit for evalu-
ating the algorithms performance while choosing the optimal hyperparameters
is given by

Jh = α− β.np (16)

where α is the classifier accuracy, np is the percentage of prototypes in relation
to the number of training samples, and β is a weighting between these two
factors. By increasing β, this evaluation penalizes hyperparameters that lead
the algorithm to build dictionaries with a large number of prototypes.

The motor failure data set was the first to be investigated. It consists of 294
feature vectors, each one containing 6 harmonics of the Fourier Transform from
a line current measurement of a three phase induction motor [3]. These samples
fall into 7 classes, where 1 is for normal condition (42 samples) and the other
6 are from short-circuit condition (252 samples). In [3], the best results were
reached when the problem was treated as a binary one and when the classes
were balanced (adding 210 artificial samples of normal condition to the data
set). So, the same methodology was used at this paper.

The results for this methodology, using the data set of 504 samples (252 for
each class) and β = 0.5 - see Eq. (16) - are depicted at figure 1. First, it is possible
to infer that, for this data set, the classification performance is improved when
the kernel functions, different from the linear one, are used. if we just analyze,
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for example, the best result of the proposed approach, using the Gaussian Kernel
and the dKNN-ALD-1 classifier, the following results were achieved: the classifier
reached 100% of accuracy but it needed to use 62, 5% of the samples from the
training data set (220 prototypes from 352 training samples).

Fig. 1. Results using the motor failure data set

In order to test a data set with more features and samples, the Pap-smear
data set 5 was used. It consists of 917 images of Pap-smear cells where each cell
is described by 20 numerical features, and the cells fall into 7 classes. 3 classes
are from normal cells (totaling 242 samples) and 4 classes are from abnormal
cells (totaling 675 samples) [8]. This data set was also considered as a binary
one. The results achieved by the proposed approach, using β = 1 are represented
in figure 2. First, the worst mean and maximum accuracy rates, for this data set,
were achieved by using the log kernel. Finally, if we just analyze, for example,
the best result of the proposed approach, using the Gaussian Kernel and the
KNN-ALD-1 classifier, the following results were achieved: the classifier reached
92% of accuracy using just 3, 27% of samples from the training data set (21
prototypes from 641 training samples).

5 Conclusions and Further Work

In this paper, we presented a new prototype-based classifier that uses the ALD
method for selecting the relevant prototypes of a training data set and uses ker-
nelized distances in order to classify new data. This method has the advantage
of having just few hyperparameters (sparsity level ν and the kernel functions’
parameter γ) to optimize, although some questions still need to be further in-
vestigated, such as the first element choice of the dictionary. In preliminary tests

5 http://mde-lab.aegean.gr/downloads
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Fig. 2. Results using the Pap-smear data set

with Iris data base, we indicate some characteristics of the hyperparameters
and dictionary build methods. In the general tests, the maximum results were
achieved by using the Gaussian kernel function and the KNN-ALD-1 classifier.
Also in the general tests, we shown that this approach can be successfully ap-
plied to classification, as it reached 100% of maximum accuracy for the motor
failure data set and 92% with the Pap-smear data set using 62, 5% and 3, 27%
training samples of each data set respectively.

Currently, we are evaluating if the training part of the proposed algorithm
can be used as an initialization approach to another prototype based algorithms,
such as SOM and LVQ, by choosing the initial prototypes, avoiding trial-and-
error methods.
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