Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/70707
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCoelho, David Nascimento-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T16:49:52Z-
dc.date.available2023-02-09T16:49:52Z-
dc.date.issued2019-
dc.identifier.citationCOELHO, D. N.; BARRETO, G. A. Approximate linear dependence as a design method for Kernel prototype-based classifiers. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS, 13., 2019, Barcelona. Anais... Barcelona, 2013. p. 241-250.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70707-
dc.description.abstractThe approximate linear dependence (ALD) method is a sparsification procedure used to build a dictionary of samples extracted from a data set. The extracted samples are approximately linearly independent in a high-dimensional kernel reproducing Hilbert space. In this paper, we argue that the ALD method itself can be used to select relevant prototypes from a training data set and use them to classify new samples using kernelized distances. The results obtained from intensive experimentation with several datasets indicate that the proposed approach is viable to be used as a standalone classifier.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Workshop on Self-Organizing Mapspt_BR
dc.subjectPrototype-based classifierspt_BR
dc.subjectSparsificationpt_BR
dc.subjectApproximate linear dependencept_BR
dc.subjectKernel classifierspt_BR
dc.subjectKernel SOMpt_BR
dc.titleApproximate linear dependence as a design method for Kernel prototype-based classifierspt_BR
dc.typeArtigo de Eventopt_BR
Appears in Collections:DETE - Trabalhos apresentados em eventos

Files in This Item:
File Description SizeFormat 
2019_eve_gabarreto.pdf346,58 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.