Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70695
Tipo: | Artigo de Evento |
Título : | On recurrent neural networks for auto-similar traffic prediction: a performance evaluation |
Autor : | Menezes, José Wally Mendonça de Barreto, Guilherme de Alencar |
Palabras clave : | Recurrent neural networks;Traffic prediction;Auto-similar processes;VBR video traffic;Multi-step-ahead prediction |
Fecha de publicación : | 2006 |
Editorial : | International Telecommunications Symposium |
Citación : | MENEZES, J. W. M.; BARRETO, G. A. On recurrent neural networks for auto-similar traffic prediction: a performance evaluation. In: INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, 2006, Fortaleza. Anais... Fortaleza: IEEE, 2006. p. 534-539. |
Resumen en portugués brasileño: | The NARX network is a recurrent neural architecture commonly used for input-output modelling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to nonlinear time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original NARX architecture to fully exploit its computational resources to improve prediction performance. We use real-world VBR video traffic time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70695 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2006_eve_gabarreto.pdf | 416,63 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.