Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70695
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Menezes, José Wally Mendonça de | - |
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.date.accessioned | 2023-02-09T16:14:17Z | - |
dc.date.available | 2023-02-09T16:14:17Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | MENEZES, J. W. M.; BARRETO, G. A. On recurrent neural networks for auto-similar traffic prediction: a performance evaluation. In: INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, 2006, Fortaleza. Anais... Fortaleza: IEEE, 2006. p. 534-539. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70695 | - |
dc.language.iso | en | pt_BR |
dc.publisher | International Telecommunications Symposium | pt_BR |
dc.subject | Recurrent neural networks | pt_BR |
dc.subject | Traffic prediction | pt_BR |
dc.subject | Auto-similar processes | pt_BR |
dc.subject | VBR video traffic | pt_BR |
dc.subject | Multi-step-ahead prediction | pt_BR |
dc.title | On recurrent neural networks for auto-similar traffic prediction: a performance evaluation | pt_BR |
dc.type | Artigo de Evento | pt_BR |
dc.description.abstract-ptbr | The NARX network is a recurrent neural architecture commonly used for input-output modelling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to nonlinear time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original NARX architecture to fully exploit its computational resources to improve prediction performance. We use real-world VBR video traffic time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures. | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2006_eve_gabarreto.pdf | 416,63 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.