
On Recurrent Neural Networks for Auto-Similar
Traffic Prediction: A Performance Evaluation
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Abstract— The NARX network is a recurrent neural archi-
tecture commonly used for input-output modelling of nonlinear
systems. The input of the NARX network is formed by two
tapped-delay lines, one sliding over the input signal and the other
one over the output signal. Currently, when applied to nonlinear
time series prediction, the NARX architecture is designed as
a plain Focused Time Delay Neural Network (FTDNN); thus,
limiting its predictive abilities. In this paper, we propose a strat-
egy that allows the original NARX architecture to fully exploit
its computational resources to improve prediction performance.
We use real-world VBR video traffic time series to evaluate
the proposed approach in multi-step-ahead prediction tasks. The
results show that the proposed approach consistently outperforms
standard neural network based predictors, such as the FTDNN
and Elman architectures.

Index Terms— Recurrent neural networks, traffic prediction,
auto-similar processes, VBR video traffic, multi-step-ahead pre-
diction.

I. INTRODUCTION

Artificial neural networks (ANNs) have been successfully
used as a tool for time series prediction and modeling in a
variety of application domains, including financial time series
prediction [1], river flow forecasting [2], biomedical time
series modeling [3] and network traffic prediction [4], [5],
[6], just to mention a few. Usually, ANN models outperform
traditional linear techniques, such as the well-known Box-
Jenkins models [7], when the time series are noisy and
nonlinear. In such cases, the universal approximation and
generalization abilities of ANN models seems to justify their
better prediction performance.

In nonlinear time series prediction, ANN models are com-
monly used as one-step-ahead predictors, estimating only the
next value of a time series without feeding the predicted
value back to the model’s input regressor. In other words, the
input regressor contains only actual sample points of the time
series. If the user is interested in a wider prediction horizon, a
procedure known as multi-step-ahead prediction, the model’s
output should be fed back to the input regressor for a fixed but
finite number of time steps. In this case, the input regressor’s
components, previously composed of actual sample points of
the time series, are gradually replaced by predicted values as
time goes by.

If the prediction horizon tends to infinity, from some
moment in time on, the input regressor will start to be
composed only of previous estimated values of the time series.
In this case, the multi-step-ahead prediction task becomes a
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dynamic modeling task, in which the ANN model acts as an
autonomous system, trying to recursively emulate the dynamic
behavior of the system that generated the nonlinear time
series [8]. Multi-step ahead prediction and dynamic modelling
are much more complex to deal with than one-step-ahead
prediction, and it is believed that these are complex tasks in
which ANN models play an important role, in particular those
related to recurrent neural architectures [9].

Recurrent ANNs have local and/or global feedback loops in
their structure. Even though feedforward MLP-like networks
can be easily adapted to process time series through an input
tapped delay line, giving rise to the well-known Focused Time
Delay Neural Network (FTDNN), they can also be easily
converted to simple recurrent architectures by feeding back
the neuronal outputs of the hidden or output layers, giving rise
to Elman and Jordan networks, respectively [10]. Recurrent
neural networks (RNNs) are capable to represent arbitrary
nonlinear dynamical mappings [11], such as those commonly
found in nonlinear time series prediction tasks.

The previously described neural architectures are usually
trained through the standard backpropagation algorithm. How-
ever, learning to perform tasks in which the temporal depen-
dencies present in the input/output signals span long time
intervals can be quite difficult using gradient descent [12].
In [13], the authors reported that learning such long-term
temporal dependencies with gradient-descent techniques is
more effective in a class of recurrent ANN architecture called
Nonlinear Autoregressive with eXogenous input (NARX) [14]
than in simple MLP-based recurrent models. This occurs in
part because the NARX model’s input vector is cleverly built
by means of a tapped-delay line sliding over the input signal
together with another tapped-delay line over the network’s
output.

Despite the aforementioned advantages of the NARX net-
work, its application to univariate time series prediction has
been misdirected. In this type of application, the tapped-delay
line over the output signal is eliminated, thus reducing the
NARX network to a plain FTDNN architecture. Considering
this under-utilization of the NARX network, we propose a
simple strategy based on Takens’ embedding theorem to allow
the computational abilities of the original NARX network to
be fully exploited in computer network traffic modelling and
prediction.

The remainder of the paper is organized as follows. In
Section II, we briefly describe the NARX recurrent network
model and its main characteristics. In Section III we describe
the basics of the nonlinear time series prediction problem and
introduce our approach. The simulations and discussion of
results are presented in Section IV. The paper is concluded
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Fig. 1. A NARX network with du input and dy output delays.

in Section V

II. THE NARX NETWORK

The Nonlinear Autoregressive model with Exogenous in-
puts (NARX) model is an important class of discrete-time
nonlinear systems that can be mathematically represented as
follows [15], [16]:

y(n + 1) = f [y(n), . . . , y(n − dy + 1); (1)
u(n), u(n− 1), . . . , u(n − du + 1)]

or, in a compact form:

y(n + 1) = f [y(n);u(n)] (2)

where u(n) ∈ R and y(n) ∈ R denote, respectively, the input
and output of the model at discrete time n, while du ≥ 1 and
dy ≥ 1, du ≤ dy, are the input-memory and output-memory
orders. The vectors y(n) and u(n) denote the output and input
regressors, respectively. Figure 1 shows the topology of an
one-hidden-layer NARX network.

The function f(·) is a (generally unknown) nonlinear
function which should be approximated. When this is done
by a multilayer Perceptron (MLP), the resulting topology is
called a NARX recurrent neural network [17], [11]. This is a
powerful class of dynamical models which has been shown
to be computationally equivalent to Turing machines [18].
The NARX network is trained basically under one out of two
modes:

• Series-Parallel (SP) Mode - In this case, the output’s
regressor is formed only by actual values of the system’s
output:

ŷ(n + 1) = f̂ [ysp(n);u(n)]

= f̂ [y(n), . . . , y(n − dy + 1); (3)
u(n), u(n− 1), . . . , u(n − du + 1)]

• Parallel (P) Mode - In this case, estimated outputs are fed
back and included in the output’s regressor:

ŷ(n + 1) = f̂ [yp(n);u(n)]

= f̂ [ŷ(n), . . . , ŷ(n − dy + 1); (4)
u(n), u(n − 1), . . . , u(n − du + 1)]

It is worth noting that the feedback pathway shown in
Figure 1 is present only in the Parallel Identification Mode. As
a tool for nonlinear system identification, the NARX network
has been successfully applied to a number of real-world
input-output modelling problems, such as heat exchangers,
waste water treatment plants, catalytic reforming systems in a
petroleum refinery and nonlinear time series prediction.

Of particular interest for this paper is the issue of nonlinear
time series prediction with the NARX network. In this type of
application, the output-memory order is set dy = 0, thus reduc-
ing the NARX network to a plain FTDNN architecture [19]:

y(n + 1) = f [u(n)] (5)
= f [u(n), u(n − 1), . . . , u(n − du + 1)]

where u(n) ∈ R
du is the input regressor. This simplified

formulation of the NARX network eliminates a considerable
portion of its representational capabilities as a recurrent net-
work; that is, all the dynamic information that could be learned
from the past memories of the output (feedback) path is
discarded. For many practical applications, such as self-similar
traffic modelling [20], the network must be able to robustly
store information for a long period of time in the presence of
noise.

It is worth emphasizing that the original formulation of the
NARX network does not circumvent the problem of long-
term dependencies, but it has been demonstrated that it often
performs much better than standard recurrent ANNs in such
a class of problems, achieving much faster convergence and
better generalization performance [14]. However, if the output
memory is fully discarded as in Equation (5) these properties
may no longer be observed. Considering this limited use
of the potentialities of the NARX network, we propose a
simple strategy to allow the computational abilities of the
NARX network to be fully exploited in nonlinear time series
prediction tasks.

III. NONLINEAR TIME SERIES PREDICTION WITH NARX
For a better understanding of the proposed approach for

nonlinear time series prediction using the NARX network, we
give a brief description of the theory of embedding. For further
details on this theory, the interested reader are referred to [21],
[22], [23].

The state of a deterministic dynamical system is the infor-
mation necessary to determine the entire future evolution of
the system. In discrete time, this evolution can be described
by the following system of difference equations:

x(n + 1) = F[x(n)] (6)

where x(n) ∈ R
d is the state of the system at time n, and F[·]

is a nonlinear vector valued function. A time series is a set of
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measures {x(n)}, n = 1, . . . , N , of a scalar quantity observed
at the output of the system over time. This observable quantity
is defined in terms of the state x(n) of the underlying system
as follows:

x(n) = h[x(n)] + ε(t) (7)

where h(·) is a nonlinear scalar-valued function, ε is a random
variable which accounts for modelling uncertainties and/or
measurement noise. It is commonly assumed that ε(t) is
drawn from a Gaussian white noise process. It can be inferred
immediately from Equation (7) that the observations {x(n)}
are seen as a projection of the multivariate state space of the
system onto the one-dimensional space. Equations (6) and (7)
describe together the state-space behavior of the dynamical
system.

In order to perform prediction, one needs to reconstruct
(estimate) as well as possible the state space of the system
using the information provided by {x(n)}. Takens [24] has
shown that, under very general conditions, the state of a
deterministic dynamic system can be accurately reconstructed
by a time window of finite length sliding over the observed
time series as follows:

x1(n) , [x(n), x(n − τ), . . . , x(n − (dE − 1)τ)] (8)

where x(n) is the value of the time series at time n, dE

is the embedding dimension and τ is the embedding de-
lay. Equation (7) implements the delay embedding theorem.
This theorem motivates the technique of using time-delay
coordinate reconstruction in reproducing the phase space of
an observed dynamical system; that is, a collection of time-
lagged values in a dE-dimensional vector space will provide
sufficient information to reconstruct the states of the dynamical
system. Thus, the purpose of time-delay embedding is to
unfold the projection back to a multivariate state space that
is representative of the original system.

The embedding theorem provides a sufficient condition
for choosing the embedding dimension dE large enough so
that the projection is theoretically able to reconstruct the
original state space. This theorem also provides a theoretical
framework for nonlinear time series prediction, where the
predictive relationship between the current state x1(t) and the
next value of the time series is given by the following equation:

x(n + 1) = g[x1(n)] (9)

Once the embedding dimension dE and delay τ are chosen,
one remaining task is to approximate the mapping function
g(·). It has been shown that a feedforward neural network
with enough neurons is capable of approximating any non-
linear function to an arbitrary degree of accuracy. Thus, it
can provide a good approximation to the function g(·) by
implementing the following mapping:

x̂(n + 1) = ĝ[x1(n)] (10)

where x̂(n + 1) is an estimate of x(n + 1) and ĝ(·) is the
corresponding approximation of g(·). The estimation error,
e(n+1) = x(n+1)− x̂(n+1), is commonly used to evaluate
the quality of the approximation.

If we assume u(n) = x1(n) and y(n + 1) = x(n + 1) in
Equation (5), then it leads to an intuitive interpretation of the
nonlinear state-space reconstruction procedure as equivalent
to the time series prediction problem whose the goal is to
compute an estimate of x(n + 1). Thus, the only thing we
have to do is to train a FTDNN model [9]. Once training is
completed, the FTDNN can be used for predicting the next
samples of the time series.

Despite the correctness of the FTDNN approach, recall
that it is derived from a simplified version of the NARX
network by eliminating the output memory. In order to use
the full computational abilities of the NARX network for
nonlinear time series prediction, we propose novel definitions
for its input and output regressors. Firstly, the input signal
regressor, denoted by u(n), is defined by the delay embedding
coordinates of Equation (8):

u(n) = x1(n) (11)
= [x(n), x(n − τ), . . . , x(n − (dE − 1)τ)]

where we set du = dE . In words, the input signal regressor
u(n) is composed of dE actual values of the observed time
series, separated from each other of τ time steps.

Secondly, since the NARX network can be trained in two
different modes, the output signal regressor y(n) can be
written as follows:

ysp(n) = [x(n), . . . , x(n − dy + 1)] (12)
yp(n) = [x̂(n), . . . , x̂(n − dy + 1)] (13)

where the output regressor for the SP mode in Equation (12)
contains dy past values of the actual time series, while the
output regressor the P mode in Equation (13) contains dy past
values of the estimated time series. For a suitably trained
network, these outputs are estimates of previous values of
x(n + 1), and should obey the following predictive relation-
ships implemented by the NARX network:

x̂(n + 1) = f̂ [ysp(n),u(n)] (14)
x̂(n + 1) = f̂ [yp(n),u(n)] (15)

where the nonlinear function f̂(·) be readily implemented
through a MLP trained with backpropagation. The NARX net-
works trained according to Equations (14) and (15) are denoted
onwards by NARX-SP and NARX-P networks, respectively.

Note that, unlike the FTDNN-based approach for the non-
linear time series prediction problem, the proposed approach
makes full use of the output signal regressor ysp(n) (or
yp(n)). Equations (11) and (12) are valid only for one-step-
ahead prediction tasks. If one is interested in multi-step-ahead
or recursive prediction tasks, the estimates x̂ should also be
inserted into the regressors in a recursive fashion.

The proposed approach is summarized as follows. A recur-
rent NARX network is defined so that its input regressor u(n)
contains samples of the measured variable x(n) separated
τ > 0 time steps from each other, while the output regressor
y(n) contains actual or estimated values of the same variable,
but sampled at consecutive time steps. As training proceeds,
these estimates should become more and more similar to the
actual values of the time series, indicating convergence of the
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training process. Thus, it is interesting to note that the input
signal regressor supplies medium- to long-term information
about the dynamical behavior of the time series, since the
delay τ is always much larger than unity, while the output
regressor, once the network has converged, supplies short-term
information about the same time series.

IV. SIMULATIONS

Since in Internet and other packet/cell switching broad-
band networks (such as ATM), Variable bit rate (VBR) video
traffic will certainly be a major part of the traffic produced
by multimedia sources, many researches have focused on
VBR video traffic prediction to devising network management
strategies that satisfy QoS requirements. Another motivation
for studies on network traffic prediction comes from the im-
portant discovery of self-similarity and long-range dependence
(LRD) in broad-band network traffic [25]. Researchers have
also found that VBR video traffic typically exhibits burstiness
over multiple time scales [26], [27].

In this paper, we evaluate the NARX-P and NARX-SP
models using VBR video traffic time series (trace), extracted
from Jurassic Park [28]. This video traffic trace was encoded
at University of Würzburg with MPEG-I. The frame rates
of video sequence coded Jurassic Park have been used. The
MPEG algorithm uses three different types of frames: In-
traframe (I), Predictive (P) and Bidirectionally-Predictive (B).
These three types of frames are organized as a group (Group of
Picture, GoP) defined by the distance L between I frames and
the distance M between P frames. If the cyclic frame pattern
is {IBBPBBPBBPBBI}, then L=12 and M=3. These values
for L and M are used in this paper.

The resulting time series has 2000 sample points which have
been rescaled to the range [−1, 1]. The rescaled time series was
further split into two sets for cross-validation purposes: 1500
samples for training and 500 samples for testing.

For the sake of completeness, a performance comparison
with the FTDNN and Elman recurrent networks is also carried
out. All the networks evaluated in this paper have two-
hidden layers and one output neuron. All neurons in both
hidden layers and the output neuron use the hyperbolic tangent
activation function. The standard backpropagation algorithm is
used to train the networks with learning rate equal to 0.001. No
momentum term is used. In what concerns the Elman network,
only the neuronal outputs of the first hidden layer are fed back
to the input layer.

The number of neurons, Nh,1 and Nh,2, in the first and
second hidden layers, respectively, are chosen according to
the following rules:

Nh,1 = 2dE + 1 and Nh,2 =
√

Nh,1 (16)

where Nh,2 is rounded up towards the next integer number.
The parameter dy is chosen according to the following rule:

dy = 2τdE (17)

where τ is selected as the value occurring at the first minimum
of the mutual information function of the time series [29].

The networks are evaluated in terms of the Normalized
Mean Squared Error (NMSE), defined as follows:

NMSE(N) =
1

N · σ2
x

N∑

n=1

e2(n) =
σ̂2

e

σ̂2
x

(18)

where N is the horizon prediction (i.e., how many steps
into the future a given network has to predict), σ̂2

x is the
sample variance of the actual time series, and σ̂2

e is the
sample variance of the sequence of estimation errors1. All the
reported values of NMSE are mean values averaged over 10
training/testing runs.

The simulations aim to evaluate, in qualitative and quanti-
tative terms, the predictive ability of all networks of interest.
Once they have been trained, the networks are required to
provide estimates of the future sample values of the laser time
series for a certain prediction horizon N . The predictions are
executed in a recursive fashion until desired prediction horizon
is reached, i.e., during N time steps the predicted values
are fed back in order to take part in the composition of the
regressors. In this sense, the NMSE quantity in Equation (18)
is better understood as a multi-step-ahead NMSE. For the
NARX-SP network in particular, the predicted values, during
multi-step ahead predictions, should be fed back to both the
input regressor u(n) and output regressor ysp(n).

Evaluation of the multi-step-ahead predictive performances
of all networks can also help assessing the sensitivity of the
neural models to important training parameters, such as the
number of training epochs and the embedding dimension (dE),
as shown in Figure 2.

Figure 2(a) shows the NMSE curves for all neural networks
versus the value of the embedding dimension, dE , which varies
from 3 to 24. For this simulation we trained all the networks
for 300 epochs, τ = 1 and dy = 24. One can easily note
that the NARX-P and NARX-SP performed better than the
FTDNN and Elman networks. In particular, the performance
of the NARX-SP was rather impressive, in the sense that it
remains constant throughout the studied range. From dE ≥ 12
onwards, the performances of the NARX-P and NARX-SP are
practically the same. It is worth noting that the performances
of the FTDNN and Elman networks approaches those of the
NARX-P and NARX-SP networks when dE is of the same
order of magnitude of dy. This suggests that, for NARX-SP
(or NARX-P) networks, we can select a small value for dE

and still have a very good performance.
Figure 2(b) shows the NMSE curves obtained from the sim-

ulated neural networks versus the number of training epochs,
ranging from 90 to 600. For this simulation we trained all the
networks with τ = 1, de = 12 and dy = 2τdE = 24. Again,
better performances were achieved by the the NARX-P and
NARX-SP. The performance of the NARX-SP is practically
the same from 100 epochs on. The same behavior is observed
for the NARX-P network from 200 epochs on. This can be
explained by recalling that the NARX-P uses estimated values
to compose the output regressor yp(n) and, because of that,
it learns slower than the NARX-SP network.

1Assuming that the sequence of estimation errors has zero mean.
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Fig. 2. Evaluation of the sensitivity of the neural networks with respect to (a) the embedding dimension and (b) the number of training epochs.

Another important behavior can be observed for the FTDNN
and Elman networks. From 200 epochs onwards, these net-
works increase their NMSE values instead of decreasing them.
This can be an evidence of overfitting, a phenomenon observed
when powerful nonlinear models, with excessive degrees of
freedom (too much weights), are trained for a long period with
a finite size data set. In this sense, the results of Figure 2(b)
strongly suggest that the NARX-SP and NARX-P networks
are much more robust than the FTDNN and Elman networks.

Finally, we show in Figures 3(a), 3(b) and 3(c) typical
estimated VBR video traffic traces generated by the FTDNN,
Elman and NARX-SP networks, respectively. For this simula-
tion, all the neural networks are required to predict recursively
the sample values of the VBR video traffic trace for 300 steps
ahead in time. For all networks, we have set dE = 12, τ = 1,
dy = 24 and trained the neural models for 300 epochs. For
these training parameters, the NARX-SP predicted the video
traffic trace much better than the FTDNN and Elman networks.

It is worth noting that the results reported in Figure 3 did
not mean to say that the FTDNN and Elman networks cannot
ever predict the video traffic trace as well as the NARX-SP.
They only mean that, for the same training and configuration
parameters, the NARX-SP has greater computational power
provided by the output regressor. Recall that the MLP is
an universal function approximation; and so, any MLP-based
neural model, such as the FTDNN and Elman networks, are in
principle able to approximate complex function with arbitrary
accuracy, once enough training epochs and data are provided.

V. CONCLUSIONS

In this paper, we proposed a strategy that allows the
original architecture of the NARX network to fully explore
its computational power to improve performance in complex
time series modelling and prediction tasks. We used real-
world VBR video traffic time series to evaluate the proposed

approach in multi-step-ahead prediction tasks. The results have
shown that the proposed approach consistently outperforms
standard neural network based predictors, such as the FTDNN
and Elman architectures.
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