Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70695
Tipo: Artigo de Evento
Título: On recurrent neural networks for auto-similar traffic prediction: a performance evaluation
Autor(es): Menezes, José Wally Mendonça de
Barreto, Guilherme de Alencar
Palavras-chave: Recurrent neural networks;Traffic prediction;Auto-similar processes;VBR video traffic;Multi-step-ahead prediction
Data do documento: 2006
Instituição/Editor/Publicador: International Telecommunications Symposium
Citação: MENEZES, J. W. M.; BARRETO, G. A. On recurrent neural networks for auto-similar traffic prediction: a performance evaluation. In: INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM, 2006, Fortaleza. Anais... Fortaleza: IEEE, 2006. p. 534-539.
Resumo: The NARX network is a recurrent neural architecture commonly used for input-output modelling of nonlinear systems. The input of the NARX network is formed by two tapped-delay lines, one sliding over the input signal and the other one over the output signal. Currently, when applied to nonlinear time series prediction, the NARX architecture is designed as a plain Focused Time Delay Neural Network (FTDNN); thus, limiting its predictive abilities. In this paper, we propose a strategy that allows the original NARX architecture to fully exploit its computational resources to improve prediction performance. We use real-world VBR video traffic time series to evaluate the proposed approach in multi-step-ahead prediction tasks. The results show that the proposed approach consistently outperforms standard neural network based predictors, such as the FTDNN and Elman architectures.
URI: http://www.repositorio.ufc.br/handle/riufc/70695
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2006_eve_gabarreto.pdf416,63 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.