Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70694
Tipo: Artigo de Evento
Título : Estimating the number of hidden neurons of the MLP using singular value decomposition and principal components analysis: a novel approach
Autor : Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
Medeiros, Cláudio Marques de Sá
Fecha de publicación : 2010
Editorial : Brazilian Symposium on Neural Networks
Citación : SANTOS, J. D. A.; BARRETO, G. A.; MEDEIROS, C. M. S. Estimating the number of hidden neurons of the MLP using singular value decomposition and principal components analysis: a novel approach. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 11., 2010, São Paulo. Anais... São Paulo: IEEE, 2010. p. 19-24.
Abstract: This paper presents a novel technique to estimate the number of hidden neurons of an MLP classifier. The proposed approach consists in the post-training application of SVD/PCA to the backpropagated error and local gradient matrices associated with the hidden neurons. The number of hidden neurons is then set to the number of relevant singular values or eigenvalues of the involved matrices. Computer simulations using artificial and real data indicate that proposed method presents better results than obtained with the application of SVD and PCA to the outputs of the hidden neurons computed during the forward phase of the MLP training.
URI : http://www.repositorio.ufc.br/handle/riufc/70694
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2010_eve_gabarreto.pdf269 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.