
Estimating the Number of Hidden Neurons of the MLP Using Singular Value
Decomposition and Principal Components Analysis: A Novel Approach

José Daniel A. Santos
IFCE - Industry Department

Av. Contorno Norte, 10
Maracanaú, Ceará, Brazil

jdaniel@ifce.edu.br

Guilherme A. Barreto
UFC - Teleinformatics Engineering

Av. Mister Hull, S/N, Campus of Pici
Fortaleza, Ceará, Brazil

Email: guilherme@deti.ufc.br

Cláudio M. S. Medeiros
IFCE - Industry Department

Av. 13 de Maio, 2081
Fortaleza, Ceará, Brazil

claudiosa@ifce.edu.br

Abstract—This paper presents a novel technique to estimate
the number of hidden neurons of an MLP classifier. The
proposed approach consists in the post-training application
of SVD/PCA to the backpropagated error and local gradient
matrices associated with the hidden neurons. The number of
hidden neurons is then set to the number of relevant singular
values or eigenvalues of the involved matrices. Computer
simulations using artificial and real data indicate that proposed
method presents better results than obtained with the appli-
cation of SVD and PCA to the outputs of the hidden neurons
computed during the forward phase of the MLP training.

I. INTRODUCTION

The complexity of an MLP network with a single hidden
layer is related the number of hidden neurons and the
corresponding number of adjustable parameters, which for
a neural network is measured by the number of synaptic
connections. The addition of a hidden neuron increases the
number of parameters (including bias) in (P +1)+M terms,
where P and M denote the number of input units and output
neurons, respectively.

Several authors have been devising strategies to esti-
mate the number of hidden neurons of the MLP neural
network. Gómez et al. [1] selected neural architectures
using a measure of complexity for structures with various
Boolean functions, called the complexity of generalization.
This method, however, can only be applied to binary data. In
Delogu et al. [2] an algorithm is proposed which is based on
the geometric interpretation of the MLP network, followed
by linear programming techniques to determine the number
of hidden neurons and the number of synaptic connections.
Trenn [3] used the order of function approximation by
Taylor polynomials to estimate the number of hidden units
in a MLP. This analysis was purely theoretical, without
taking into account practical issues as the number of training
vectors and the adjustable parameters. The weight pruning
method proposed by Medeiros and Barreto [4] eventually
led to elimination of redundant hidden neurons in a MLP
network. The analysis was based on the cross-correlation
between the errors produced by the output neurons and the
backpropagated errors associated with the hidden neurons.

Of particular interest to this work, the use of singular
value decomposition (SVD) for model selection has been
proposed in a few early works [5], [6], [7], [8]. Weigend and
Rumelhart [5] used SVD to demonstrate that the effective
ranks of the matrices formed by the activations of hidden
neurons and the weights of the hidden layer become the
same as the solution converges, thus indicating that the learn-
ing algorithm (back-propagation using gradient descent) can
be finished. More recently, SVD was used to estimate hidden
neurons [9] based on the relevant singular values matrix of
the activations of hidden neurons.

In this paper we introduce a novel methodology for
estimating the number of hidden neurons that provides ac-
ceptable performance for a given pattern classification task,
with the smallest number of hidden neurons capable of good
generalization to unknown data. In this context, in order to
estimate the number of hidden neurons of an MLP network
with a single hidden layer, we propose the post-training
application of SVD/PCA to the matrices of backpropagated
errors and local gradient values associated with the hidden
neurons. The number of hidden neurons is then set to the
number of relevant singular valuesor eigenvalues of the
involved matrices. Simulations using artificial and real data
are performed to assess the proposed methodology.

The remainder of the paper is organized as follows. In
Section 2, the fundamentals of SVD/PCA are described. In
Section 3 we introduce a novel SVD/PCA-based methodol-
ogy to estimate the number of hidden neurons of the MLP
network. In Section 4 we present the results and discuss the
main issues. The paper is concluded in Section 5.

II. FUNDAMENTALS OF SVD AND PCA

SVD and PCA are related mathematical techniques, both
widely used for data compression, feature selection and
extraction or model selection in data analysis [10]. Consider
the matrix A ∈ R

m×n. Thus, AT A is symmetric and can
be orthogonally diagonalized. Let {v1,v2, . . . ,vn} be an
orthonormal basis of R

n comprised of the eigenvectors of
AT A, and {λ1, λ2, · · · , λn} the corresponding eigenvalues

2010 Eleventh Brazilian Symposium on Neural Networks

978-0-7695-4210-2/10 $26.00 © 2010 IEEE

DOI 10.1109/SBRN.2010.12

19

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 16:20:13 UTC from IEEE Xplore. Restrictions apply.

of AT A. Hence, for 1 � i � n, we have

‖Avi‖2 = (Avi)T Avi = vT
i (AT Avi) = vT

i (λivi) = λi,
(1)

where vi is a unit-length eigenvector of AT A and ‖ · ‖
denotes the L2-norm. According to Eq. (1) the eigenvalues
of AT A are all non-negative.

Assuming that the eigenvalues are arranged in such way
that λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0, the singular values of A are
defined as σi =

√
λi, for 1 � i � n. An important property

of singular values is that they provide information about the
rank of matrix A, denoted by ρ(A). If A ∈ R

m×n has r
non-zero singular values, σ1 ≥ σ2 ≥ . . . ≥ σr > 0, with
σr+1 = . . . = σn = 0, then ρ(A) = r.

Let us now assume that there is a matrix Σ ∈ R
m×n,

whose first elements in the main diagonal are the r first
singular values of A, and there are two orthogonal matrices
U ∈ R

m×m and V ∈ R
m×m, such that

A = UΣV T =
r∑

i=1

σiuivT
i , (2)

where the columns of U (ui) are called the left singular
vectors of A and the columns of V (vi) are the right singular
vectors of A.

If Eq. (2) is post-multiplied by AT U , we obtain AAT U =
UΣV T AT U = UΣΣT . By the same token, it can be shown
that AT AV = V ΣT Σ. Since ΣΣT and ΣT Σ are square
diagonal matrices with the singular values in the diagonal,
and the vectors ui and vi are the eigenvectors of the matrices
AAT and AT A, we get the following simplification:

AAT ui = σi
2ui i = 1, . . . , m. (3)

AT Avi = σi
2vi i = 1, . . . , n. (4)

For a discussion about PCA, consider initially a data
matrix X ∈ R

m×n, whose columns represent the data
vectors and rows represent the features (or attributes). For
zero mean vectors, the covariance matrix of X is given by

Cx = E[XXT] ≈ 1
n − 1

XXT , (5)

where Cx ∈ R
m×m is a positive-definite matrix and E[·]

is the expected value operator. The diagonal entries are the
variances of each feature, while the off-diagonal entries are
the covariances between different pairs of features.

Let us assume that the eigenvalues of Cx are sorted in
decreasing order, i.e. λ1 ≥ λ2 ≥ . . . ≥ λm ≥ 0. By defining
a transformation matrix S ∈ R

m×m, whose columns are the
corresponding eigenvectors {si}m

i=1 of Cx, si ∈ R
m, one

can build a linear transformation Y = ST X such that the
covariance matrix of Y , denoted by Cy ∈ R

m×m, is

Cy = E[Y Y T] = E[(ST X)(XT S)] = ST CxS. (6)

This transformation produces new vectors whose features
are statistically uncorrelated and whose variances are equal
to the eigenvalues of Cx. The columns of the transformation
matrix S are the so-called principal components of X .

Since Cx is a symmetric matrix with r ≤ m orthonormal
eigenvectors, where r is the rank of the matrix, it can be
decomposed as

Cx = SCyS
T =

r∑
i=1

λisisT
i . (7)

At this stage, it is worth comparing SVD with PCA. If
the matrix A in Eqs. (3) and (4) is symmetric, the matrices
U and V become the same. Similarly, Eq. (7) is equivalent
to the “square” of Eq. (2). So, each eigenvalue in PCA is
then the square of its respective singular value in SVD, and
the two techniques become equivalents. However, SVD is
more general since it can be applied directly to rectangular
matrices, without the need to extract the covariance matrix.
PCA is a special case of SVD when the matrix is symmetric.

III. THE PROPOSED METHODOLOGY

Consider a MLP network with P input nodes, Q hidden
neurons and M output neurons. The output of the hidden
neuron i at iteration t is given by [11], [12]

y
(h)
i (t) = ϕi

[
u

(h)
i (t)

]
= ϕi

⎡
⎣ P∑

j=0

wij(t)xj(t)

⎤
⎦ , (8)

where wij is the weight between the j-th input and the i-
th hidden neuron, P is the dimension of the input vector
x (excluding the bias) and ϕi(·) is a sigmoidal activation
function. Let W̃ ∈ R

Q×(P+1) be the connection matrix
comprised of all the synaptic weights between input units
and hidden neurons, represented by

W̃ =

⎡
⎢⎢⎢⎣

wT
1

wT
2
...

wT
Q

⎤
⎥⎥⎥⎦ , (9)

where each row wT
i = [wi0 wi1 . . . wiP] corresponds to

the synaptic weights from the P + 1 input units, including
the bias, to the i-th hidden neuron.

Similarly, let X ∈ R
(P+1)×N be the matrix whose

columns are the N input training vectors:

X = [x(1) | x(2) | . . . | x(N)], (10)

where x(t) = [x0(t) x1(t) · · · xP (t)]T denotes the input
pattern at iteration t, with x0(t) = −1. Therefore, Eq. (8)
can now be written in matrix form as

Y (h) = ϕi

[
W̃X

]
, (11)

20

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 16:20:13 UTC from IEEE Xplore. Restrictions apply.

where the activation function ϕi[·] is applied component-
wise to the matrix resulting from the product W̃X . The
matrix Y (h) ∈ R

Q×N stores the outputs of the Q hidden
neurons, computed for all N examples in the training set.
In expanded form, the matrix Y (h) is represented as

Y (h) =

⎡
⎢⎢⎢⎢⎣

y
(h)
1 (1) y

(h)
1 (2) · · · y

(h)
1 (N)

y
(h)
2 (1) y

(h)
2 (2) · · · y

(h)
2 (N)

...
...

...
...

y
(h)
Q (1) y

(h)
Q (2) · · · y

(h)
Q (N)

⎤
⎥⎥⎥⎥⎦ . (12)

The error-back-propagation phase starts from the output
layer, by projecting the errors e

(o)
k (t) = dk(t) − y

(o)
k (t)

into the hidden layer, where dk(t) and y
(o)
k (t) are the target

and output responses of the k-th output neuron, respectively.
Let e

(h)
i (t) be the back-propagated error for the i-th hidden

neuron:

e
(h)
i (t) =

M∑
k=1

mki(t)δ
(o)
k (t), i = 0, . . . , Q, (13)

where mki is the weight between the i-th hidden neuron and
the k-th output neuron. The term δ

(o)
k (t) = ϕ′

k(t)e(o)
k (t) is

the local gradient of the k-th output neuron, where ϕ′
k(t) is

the derivative of its activation function.
Let M̃ ∈ R

M×(Q+1) be the connection matrix formed by
all synaptic weights from hidden to output neurons:

M̃T = [m1 | m2 | · · · | mM] , (14)

where each column-vector mk = [mk0 mk1 . . . mkQ]T

corresponds to the weight vector of the k-th output neuron,
including bias.

Consider now Δ(o) ∈ R
M×N as the matrix whose N

columns are formed by the local gradients of the M output
neurons, built for the N training examples:

Δ(o) = [δ(o)(1) | δ(o)(2) | . . . | δ(o)(N)], (15)

where each vector δ(o)(t) = [δ(o)
1 (t) δ

(o)
2 (t) · · · δ

(o)
M (t)]T .

Therefore, Eq. (13) can now be written in matrix form as

E(h) = M̃T Δ(o), (16)

where the matrix E(h) ∈ R
(Q+1)×N stores in its columns

the backpropagated errors associated with the neurons of the
hidden layer, for the whole training set. The matrix E(h) in
its expanded form is represented by

E(h) =

⎡
⎢⎢⎢⎢⎣

e
(h)
0 (1) e

(h)
0 (2) · · · e

(h)
0 (N)

e
(h)
1 (1) e

(h)
1 (2) · · · e

(h)
1 (N)

...
...

...
...

e
(h)
Q (1) e

(h)
Q (2) · · · e

(h)
Q (N)

⎤
⎥⎥⎥⎥⎦ . (17)

The first row of E(h) corresponds to the backpropagated
errors associated with the biases mk0 = θ

(o)
k , k = 1, . . . , M .

For the purposes of this paper, the first line of E(h) is not
necessary and, hence, may be removed.

The local gradients of the hidden neurons are defined as

δ
(h)
i (t) = ϕ′

i(t)
M∑

k=1

mki(t)δ
(o)
k (t) = ϕ′

i(t)e
(h)
i (t), (18)

for i = 0, ..., Q. The term ϕ′
i(t) is the derivative of the

activation function of the hidden neuron i. Let Φ(h) ∈ R
Q×N

be the matrix formed by all these derivatives for the N
training examples:

Φ(h) = [ϕ′(1) | ϕ′(2) | · · · | ϕ′(N)] , (19)

where ϕ′(t) = [ϕ′
1(t) ϕ′

2(t) · · · ϕ′
i(t) · · · ϕ′

Q(t)]T . Then,
Eq. (18) can be written in matrix form as

Δ(h) = Φ(h) � E(h), (20)

where � defines the component-wise multiplication operator
of the involved matrices. Thus, the matrix Δ(h) ∈ R

Q×N

stores the local gradients of the hidden neurons for all
training set. In its expanded form Δ(h) can be written as

Δ(h) =

⎡
⎢⎢⎢⎢⎣

δ
(h)
1 (1) δ

(h)
1 (2) · · · δ

(h)
1 (N)

δ
(h)
2 (1) δ

(h)
2 (2) · · · δ

(h)
2 (N)

...
...

...
...

δ
(h)
Q (1) δ

(h)
Q (2) · · · δ

(h)
Q (N)

⎤
⎥⎥⎥⎥⎦ . (21)

The two proposed approaches correspond to the applica-
tion of PCA/SVD to the rows of the matrices E(h) and Δ(h),
as detailed in the following section.

A. Estimating Q: A Novel Approach

The procedure to be described assumes an MLP(P, Q, M)
network, fully connected, initially with a large number Q
of hidden neurons, resulting in a network very susceptible
to data overfitting. The network is trained to achieve the
smallest possible value of the mean squared error (εtrain)
computed at the end of the training procedure using the
training data vectors:

εtrain =
1

2N

N∑
t=1

M∑
k=1

[
dk(t) − y

(o)
k (t)

]2

. (22)

The network is said to be converged if the variation of εtrain

ceases after a certain number of training epochs.
The proposed approach starts right after the training

phase. The training data vectors must be presented once
again to the network. Weight updating is not allowed at this
phase. The only objective now is to build the matrices E(h)

and Δ(h). Once these matrices are available, the next step
is to compute the covariance matrix for each one of them
in order to apply PCA. SVD can be directly applied to the
matrices E(h) and Δ(h). The next step is to extract all the
required eigenvalues (PCA) and singular values (SVD), and
place them in decreasing order.

21

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 16:20:13 UTC from IEEE Xplore. Restrictions apply.

Table I
CLASSIFICATION RESULTS OF THE PROPOSED APPROACH FOR 5 DATASETS.

Data Technique Matrix Q,q Nc CRtrain(%) CRtest(%) εtrain εtest

Initial Architecture - - 10 52 100.00 99.58 0.0046 0.0183
� Y (h) 3 17 99.35 98.92 0.0276 0.0536

PCA E(h) 1 7 69.33 67.33 0.7821 0.8189
Artificial � Δ(h) 3 17 99.40 99.08 0.0266 0.0403
Dataset � Y (h) 3 17 100.00 99.50 0.0082 0.0236

SVD E(h) 1 7 69.94 67.75 0.7794 0.8243
� Δ(h) 3 17 99.94 99.67 0.0108 0.0236

Initial Architecture - - 24 243 89.27 81.67 0.3093 0.5042
� Y (h) 4 43 88.53 86.40 0.3226 0.4059

PCA E(h) 2 23 87.76 86.08 0.3556 0.3761
Spine � Δ(h) 4 43 90.28 81.61 0.3023 0.4964

Dataset � Y (h) 4 43 90.19 81.24 0.2827 0.5034
SVD E(h) 2 23 86.85 86.67 0.3556 0.3566
� Δ(h) 4 43 91.47 78.66 0.2874 0.5373

Initial Architecture - - 50 1702 99.98 95.38 0.0026 0.1570
� Y (h) 3 104 99.67 95.88 0.0144 0.1322

PCA E(h) 1 36 99.08 97.16 0.0333 0.0931
Breast Cancer � Δ(h) 2 70 99.63 96.37 0.0162 0.1219

Dataset � Y (h) 4 138 99.85 95.44 0.0080 0.1452
SVD E(h) 1 36 99.22 95.48 0.0284 0.1507
� Δ(h) 3 104 99.71 95.66 0.0116 0.1400

Initial Architecture - - 28 1010 100.00 86.76 0.0007 0.4400
� Y (h) 8 290 100.00 88.78 0.0007 0.3716

PCA E(h) 1 38 97.76 86.95 0.0882 0.4708
Ionosphere � Δ(h) 2 74 99.67 89.95 0.0131 0.3464

dataset � Y (h) 8 290 99.99 88.22 0.0014 0.3924
SVD E(h) 1 38 97.74 86.43 0.0899 0.4855
� Δ(h) 2 74 99.73 90.00 0.0112 0.3434

Initial Architecture - - 30 363 66.87 61.50 0.8342 0.9221
� Y (h) 3 39 65.18 65.04 0.8602 0.8546

PCA E(h) 2 27 64.94 65.26 0.8698 0.8631
Abalone � Δ(h) 4 51 65.92 65.08 0.8452 0.8725

Set � Y (h) 3 39 65.14 65.59 0.8622 0.8255
SVD E(h) 2 27 65.06 65.12 0.8697 0.8746
� Δ(h) 4 51 65.88 64.79 0.8506 0.8468

The occurrence of eigenvalues (or singular values) of
small magnitude indicates relatively small contributions to
the total variance of the data under consideration. Hence,
the elimination of eigenvalues or singular values of minor
relevance should not affect the performance of MLP signif-
icantly. Applying this reasoning to the eigenvalues or the
singular values of the matrices E(h) and Δ(h), is equivalent
to eliminating the number of redundant hidden neurons.

From the exposed in the previous paragraph, the final
step is then to select the q∗ < Q largest singular values
(or eigenvalues) which are responsible for most of the total
variance of the matrices E(h) and Δ(h). For this purpose
an application-dependent threshold γ > 0 is required, the
value of which defines what percentage of the total variance
is acceptable for the problem. Thus, the criterion used for
pruning the hidden neurons in SVD case is given by

q∗ = arg min
q=1,...,Q

{∑q
i=1 σ2

i∑Q
j=1 σ2

j

≥ γ

}
, (23)

while for PCA it is given by

q∗ = arg min
q=1,...,Q

{ ∑q
i=1 λi∑Q
j=1 λj

≥ γ

}
. (24)

Eq. (23) states that, for a given γ, the number of hidden
neurons is to be set to the smallest value of q that satisfies
the inequality

∑q
i=1 σ2

i /
∑Q

j=1 σ2
j ≥ γ. The same reasoning

applies to Eq. (24). Once q∗ is determined, the network is
trained and tested again to validate the new topology.

IV. RESULTS AND DISCUSSIONS

All the simulations to be described were performed for
a fully connected MLP(P, Q, M) network trained with
standard back-propagation algorithm with momentum. A
pattern-by-pattern training mode is adopted with the hyper-
bolic tangent as activation function for hidden and output
neurons. The MLP training/testing procedure is repeated for
30 runs for each data set. The number of training epochs
varies between 500 and 1.500, depending on preliminary

22

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 16:20:13 UTC from IEEE Xplore. Restrictions apply.

evaluations of the learning curve for each data set. The
chosen number of epochs should ensure that the network has
converged. For each training/testing run, pattern vectors were
randomly selected in the proportion of 80% and 20% for
training and testing, respectively. The inputs were rescaled
to the range [−1, +1]. Synaptic weights were randomly
initialized in the range [−0.1, 0.1], the momentum parameter
was set to α = 0.75 and the initial learning rate was set to
η0 = 0.01, decaying to zero linearly with time. The pruning
threshold was set to γ = 0.95.

The numeric results are shown in the Table I, where Nc

is the total number of weights, CRtrain and CRtest denote
the classification rates for the training and testing data,
respectively, while εtrain and εtest are the mean squared
errors computed for the training and testing data. Application
of PCA/SVD to the matrix Y (h) as proposed by [9], [5] were
implemented for the sake of performance comparison.
Artificial Dataset - This data set is composed of two-
dimensional vectors, divided into two non-linearly separable
classes. The data was artificially generated by [4] for the
purpose of visualizing the hyperplanes of each hidden neu-
ron and the resulting global decision surface. A total of 200
pattern vectors were generated and equally divided into the
two classes. The initial architecture was an MLP(2, 10, 2).

From Table I we can observe that the application of
SVD and PCA to the matrices Y (h) and Δ(h) suggested
the pruning of 7 neurons, resulting in a pruned architecture
with q∗ = 3 hidden neurons. For these cases the network
achieved classification rates close to 100% for test data. The
hyperplanes of each hidden neuron and the global decision
surface for the cases with Q = 10 and q∗ = 3 hidden
neurons are shown in Fig. 1.

An odd result was achieved by the application of SVD
and PCA to the matrix E(h) resulted in the elimination
of 9 neurons, leading to a pruned architecture with poor
classification rates. For these cases the matrix E(h) presented
a single non-zero singular value, while the covariance matrix
of E(h) presented a single non-zero eigenvalue. This is an
indication that the columns of E(h) are, indeed, linearly
dependent ones. The suggestion of q = 1 hidden neuron
is then not feasible to this dataset, since it is nonlinearly
separable. As a conclusion, the best architectures for this
dataset resulted from the application of SVD and PCA to
the matrices Y (h) and Δ(h).
Spine Dataset - This biomedical dataset was kindly pro-
vided by Group of Applied Research in Orthopedics (GARO)
of the Center of Medical and Surgical Rehabilitation of
Massues, Lyon, France. The problem consists in classifying
patients as belonging to one of three categories: normal
(100 patients), disk hernia (60 patients) or spondylolisthesis
(150 patients). Each patient is represented in the database
by six biomechanical attributes derived from the shape and
orientation of the pelvis and lumbar spine [13]: pelvic
incidence, pelvic tilt, sacral slope, pelvic radius, lumbar

lordosis angle and grade of spondylolisthesis.
The initial architecture was an MLP(6, 24, 3). Analyzing

the results in Table I we observe that the application of
SVD and PCA to the matrices Y (h) and Δ(h) suggested the
elimination of 18 neurons. The application of SVD and PCA
to the matrix E(h), however, was even more aggressive, sug-
gesting the elimination of 22 hidden neurons. The interesting
issue is that the resulting MLP(6, 2, 3) network achieved
classification performance comparable to those achieved by
larger architectures, including the ones reported in [13].
UCI Datasets - The proposed approach was further applied
to three benchmarking datasets downloaded from the ma-
chine learning repository from the University of California
at Irvine1: breast cancer, ionosphere and abalone. For these
datasets we initially trained the following MLP architectures:
MLP(31, 50, 2), MLP(33, 28, 2) and MLP(8, 30, 3).

For the breast cancer dataset the results show that the
smaller number of hidden neurons was achieved after the
application of PCA to the matrix Δ(h). The application of
PCA and SVD to the matrix E(h) suggested the elimination
of 49 hidden neurons. The matrix E(h) presented a single
non-zero singular value and its covariance matrix presented
a unique non-zero eigenvalue. However, unlike the results
achieved for the artificial dataset, the classification rate for
testing data achieved the highest value with q∗ = 1. We
speculate that this could be an indication that this dataset is
indeed linearly separable. To confirm our expectations, we
trained a simple perceptron network that achieved an average
classification rate of 97.83% for testing data.

For the ionosphere dataset the best result was achieved
by the application of PCA and SVD to the matrix Δ(h),
which suggested the pruning of 26 hidden neurons. The
application of PCA/SVD to the matrix E(h) suggested
q∗ = 1, but the classification rate of the MLP(33,1,2) with
testing data was smaller than that of the MLP(33,2,2). it
is worth remembering that the best result must be a trade-
off between the smallest number of hidden neurons and the
highest classification rate among all the pruned architectures.

Finally, for the abalone dataset, which is a very hard one
to classify, we can observe that there were no significant
differences among the classification rates for the testing data
for each of the pruned architectures. In this case, one can
then choose the pruned architecture with the smallest number
of hidden neurons, which was the one resulting from the
application of PCA/SVD to the matrix E(h), i.e. MLP(8,2,3).

V. CONCLUSIONS

This paper described a simple and efficient method for
pruning redundant hidden neurons in a trained MLP net-
work. The method was based on the application of PCA and
SVD to the matrices formed by the backpropagated errors
and the local gradients of hidden neurons. The magnitudes

1http://www.ics.uci.edu/∼mlearn/MLRepository.html

23

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 16:20:13 UTC from IEEE Xplore. Restrictions apply.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(a)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(b)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(c)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(d)

Figure 1. Decision surface and individual hyperplanes for a trained MLP: (a)-(b) Q = 10 and (c)-(d) q∗ = 3 hidden neurons.

of singular values or eigenvalues served as reference the
pruning of redundant neurons in the hidden layer. Computer
simulations with artificial and real-world data indicated that,
in terms of performance in generalization, the proposed
method showed equivalent or better results when compared
to application of SVD and PCA to the matrix formed by the
activations of hidden neurons of the MLP network.

REFERENCES

[1] I. Gómez, L. Franco, and J. M. Jerez, “Neural network
architecture selection: Can function complexity help?” Neural
Processing Letters, vol. 30, pp. 71–87, 2009.

[2] R. Delogu, A. Fanni, and A. Montisci, “Geometrical synthesis
of MLP neural networks,” Neurocomputing, vol. 71, pp. 919–
930, 2008.

[3] S. Trenn, “Multilayer perceptrons: Approximation order and
necessary number of hidden units,” IEEE Transactions on
Neural Networks, vol. 19, no. 5, pp. 836–844, 2008.

[4] C. M. S. Medeiros and G. A. Barreto, “Pruning the multilayer
perceptron through the correlation of backpropagated errors,”
in 7th International Conference on Intelligent Systems Design
and Applications (ISDA’07), 2007, pp. 64–69.

[5] A. Weigend and D. Rumelhart, “The effective dimension of
the space of hidden units,” in Proceedings of the International
Joint Conference on Neural Networks (IJCNN’91), vol. 3,
1991, pp. 2069–2074.

[6] M. Hayashi, “A fast algorithm for the hidden units in a
multilayer perceptron,” in International Joint Conference on
Neural Networks (IJCNN’93), vol. 1, 1993, pp. 339–342.

[7] S. Tamura, M. Tateishi, M. Matsumoto, and S. Akita, “De-
termination of the number of redundant hidden units in a
three-layered feedforward neural network,” vol. 1, 1993, pp.
335–338.

[8] D. Psichogios and L. Ungar, “SVD-NET: An algorithm that
automatically selects network structure,” IEEE Transactions
on Neural Networks, vol. 5, no. 3, pp. 513–515, 1994.

[9] E. J. Teoh, K. C.Tan, and C. Xiang, “Estimating the num-
ber of hidden neurons in a feedforward network using the
singular value decomposition,” IEEE Transactions on Neural
Networks, vol. 17, no. 6, pp. 1623–1629, 2006.

[10] G. Strang, Linear algebra and its applications, 4th ed.
Brooks Coley, 2005.

[11] J. C. Principe, N. R. Euliano, and W. C. Lefebvre, Neural
and Adaptative Systems: Fundamentals Through Simulations.
John Wiley & Sons, Inc., 2000.

[12] S. Haykin, Neural networks: a comprehensive foundation,
2nd ed. Prentice Hall, 1998.

[13] A. R. Rocha Neto and G. A. Barreto, “On the application
of ensembles of classifiers to the diagnosis of pathologies of
the vertebral column: A comparative analysis,” IEEE Latin
America Transactions, vol. 7, no. 4, pp. 487–496, 2009.

24

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 16:20:13 UTC from IEEE Xplore. Restrictions apply.

