Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70694
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSantos, José Daniel de Alencar-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.contributor.authorMedeiros, Cláudio Marques de Sá-
dc.date.accessioned2023-02-09T16:12:52Z-
dc.date.available2023-02-09T16:12:52Z-
dc.date.issued2010-
dc.identifier.citationSANTOS, J. D. A.; BARRETO, G. A.; MEDEIROS, C. M. S. Estimating the number of hidden neurons of the MLP using singular value decomposition and principal components analysis: a novel approach. In: BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, 11., 2010, São Paulo. Anais... São Paulo: IEEE, 2010. p. 19-24.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70694-
dc.description.abstractThis paper presents a novel technique to estimate the number of hidden neurons of an MLP classifier. The proposed approach consists in the post-training application of SVD/PCA to the backpropagated error and local gradient matrices associated with the hidden neurons. The number of hidden neurons is then set to the number of relevant singular values or eigenvalues of the involved matrices. Computer simulations using artificial and real data indicate that proposed method presents better results than obtained with the application of SVD and PCA to the outputs of the hidden neurons computed during the forward phase of the MLP training.pt_BR
dc.language.isoenpt_BR
dc.publisherBrazilian Symposium on Neural Networkspt_BR
dc.titleEstimating the number of hidden neurons of the MLP using singular value decomposition and principal components analysis: a novel approachpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2010_eve_gabarreto.pdf269 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.