Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70692
Tipo: Artigo de Evento
Título : An empirical evaluation of robust gaussian process models for system identification
Autor : Mattos, César Lincoln Cavalcante
Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
Palabras clave : Robust system identification;Gaussian process;Approximate Bayesian inference
Fecha de publicación : 2015
Editorial : International Conference on Intelligent Data Engineering and Automated Learning
Citación : MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.
Abstract: System identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.
URI : http://www.repositorio.ufc.br/handle/riufc/70692
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2015_eve_gabarreto.pdf271,93 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.