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Abstract. System identification comprises a number of linear and non-
linear tools for black-box modeling of dynamical systems, with appli-
cations in several areas of engineering, control, biology and economy.
However, the usual Gaussian noise assumption is not always satisfied,
specially if data is corrupted by impulsive noise or outliers. Bearing this
in mind, the present paper aims at evaluating how Gaussian Process
(GP) models perform in system identification tasks in the presence of
outliers. More specifically, we compare the performances of two existing
robust GP-based regression models in experiments involving five bench-
marking datasets with controlled outlier inclusion. The results indicate
that, although still sensitive in some degree to the presence of outliers,
the robust models are indeed able to achieve lower prediction errors in
corrupted scenarios when compared to conventional GP-based approach.

Keywords: robust system identification, Gaussian process, approximate
Bayesian inference.

1 Introduction

Gaussian processes (GPs) provide a principled, practical, probabilistic approach
to learning in kernel machines [1]. Due to is versatility, GP models is receiv-
ing considerable attention from the Machine Learning community, leading to
successful applications to classification and regression [2], visualization of high
dimensional data [3] and system identification [4], to mention just a few.

Of particular interest to the present paper is the application of GP mod-
els to nonlinear system identification, which comprises a number of linear and
nonlinear tools for black-box modeling of dynamical systems. Contributions to
GP-based system identification seem to have started with the work of Murray-
Smith et al. [5], who applied it to vehicle dynamics data. Since then, a number
of interesting approaches can be found in the literature, such as GP with deriva-
tive observations [6], GP for learning non-stationary systems [7], GP-based local
models [8], evolving GP models [9], and GP-based state space models [10].
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Nevertheless, these previous GP-based system identification approaches have
adopted the Gaussian likelihood function as noise model. However, as a light-
tailed distribution, this function is not able to suitably handle impulsive noise
(a type of outlier). When such outliers are encountered in the data used to tune
the model’s hyperparameters, these are not correctly estimated. Besides, as a
nonparametric approach, the GP model carries the estimation data along for
prediction purpose, i.e. the estimation samples containing outliers and the mis-
estimated hyperparameters will be used during out-of-sample prediction stage,
a feature that may compromise the model generalization on new data.

In this scenario, heavy-tailed distributions are claimed to be more appropriate
as noise models when outliers are present. Such distributions are able to account
for, or justify, extreme values, as they have higher probability to occur than in
light-tailed distributions. This feature prevents the estimation step from being
too affected by outliers. However, while inference by GP models with Gaussian
likelihood is tractable, non-Gaussian likelihoods models are not, requiring the use
of approximation methods, such as Variational Bayes (VB) [?] and Expectation
Propagation (EP) [11].

Robust GP regression started to draw the machine learning community at-
tention more recently. In Faul and Tipping [12], impulsive noise is modeled as
being generated by a second Gaussian distribution with larger variance, resulting
in a mixture of Gaussian noise models. Inference is done with the VB method. In
Kuss et al. [13], a similar noise model is chosen, but the inference makes use of
the EP strategy. In Tipping and Lawrence [14], GP models with Student-t likeli-
hood are also considered in a variational context. The same likelihood is used in
Jylänki et al. [15], but it is tackled by a Laplace approximation approach. The
same approach is used in Berger and Rauscher [16] to calibrate a diesel engine
from data containing outliers. In Kuss’ thesis [17], besides reviewing some of the
approaches for robust GP regression, a Laplacian noise model is detailed and
tackled by an EP-based inference strategy.

From the exposed, the goal of this work is to evaluate some of the afore-
mentioned robust GP models in nonlinear dynamical system identification in
the presence of outliers. More specifically, we apply a Student-t noise model
likelihood with VB inference, as in [14], and a Laplace noise model with EP
inference, following [17]. Our objective is to assess if such algorithms, originally
proposed for robust regression, are able to achieve good performance in dynami-
cal system identification scenarios contaminated with outliers and compare them
with standard (i.e. non-robust) GP models that have been used in the system
identification literature.

The remainder of the paper is organized as follows. In Section 2 we describe
the task of nonlinear dynamical system identification with standard GP modeling
and the two aforementioned robust variants. In Section 3 we report the results of
the performance evaluation of the models for 5 artificial datasets with different
levels of contamination with outliers. We conclude the paper in Section 4.
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2 GP for Nonlinear Dynamical System Identification

Given a dynamical system modeled by a nonlinear autoregressive with exogenous
inputs (NARX) model, its i-th input vector xi ∈ RD is comprised of Ly past
observed outputs yi ∈ R and Lu past exogenous inputs ui ∈ R [4]:

yi = ti + εi, ti = f(xi), εi ∼ N (εi|0, σ2
n), (1)

xi = [yi−1, · · · , yi−Ly
, ui−1, · · · , ui−Lu

]T (2)

where i is the instant of observation, ti ∈ R is the true (noiseless) output, f(·)
is an unknown nonlinear function and εi is a Gaussian observation noise. After
N instants, we have the dataset D = {(xi, yi)}Ni=1 = (X,y), where X ∈ RN×D

is the so-called regressor matrix and y ∈ RN .
An estimated model may be used to simulate the output of the identified

system. We use a iterative test procedure where past estimated outputs are used
as regressors, which is called free simulation or infinite step ahead prediction.

2.1 Traditional GP Modeling

In the GP framework, the nonlinear function f(·) is given a multivariate Gaussian
prior t = f(X) ∼ GP(t|0,K), where a zero mean vector was considered andK ∈
RN×N ,Kij = k(xi,xj), is the covariance matrix, obtained with a kernel function
k(·, ·), which must generate a semidefinite positive matrix K. The following
function is a common choice and will be used in this paper [18]:

k(xi,xj) = σ2
f exp

[
−1

2

D∑
d=1

w2
d(xid − xjd)2

]
+ σ2

l x
T
i xj + σ2

c . (3)

The vector θ = [σ2
f , w

2
1, . . . , w

2
D, σ

2
l , σ

2
c ]T is comprised of the hyperparameters

which characterize the covariance of the model.
Considering a multivariate Gaussian likelihood p(y|t) = N (y|t, σ2

nI), where
I is a N × N identity matrix, the posterior distribution p(t|y,X) is tractable.
The inference for a new output t∗, given a new input x∗, is also tractable

p(t∗|y,X,x∗) = N (t∗|k∗N (K + σ2
nI)−1y, k∗∗ − k∗N (K + σ2

nI)−1kN∗), (4)

where k∗N = [k(x∗,x1), · · · , k(x∗,xN )], kN∗ = kT∗N and k∗∗ = k(x∗,x∗). The
predictive distribution of y∗ is similar to the one in Eq. (4), but the variance is
added by σ2

n.
The vector of hyperparameters θ can be extended to include the noise vari-

ance σ2
n and be determined with the maximization of the marginal log-likelihood

ln p(y|X,θ) of the observed data, the so-called evidence of the model:

θ∗ = arg max

{
−1

2
ln |K + σ2

nI| −
1

2
yT (K + σ2

nI)−1y − N

2
log(2π)

}
. (5)

The optimization process is guided by the gradients of the marginal log-likelihood
with respect to each component of the vector θ. It is worth mentioning that the
optimization of the hyperparameters can be seen as the model selection step of
obtaining a plausible GP model from the estimation data.
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2.2 Robust GP with Non-Gaussian Likelihood

The previous GP model with Gaussian likelihood is not robust to outliers, due
its light tails. An alternative is to consider a likelihood with heavy tails, such as
the Laplace and the Student-t likelihoods, respectively given by

pLap(y|t) =

N∏
i=1

1

2s
exp

(
−|yi − ti|

s

)
, (6)

and

pStu(y|t) =

N∏
i=1

Γ((ν + 1)/2)

Γ(ν/2)
√
πνσ2

(
1 +

1

ν

(yi − ti)2

σ2

)−(ν+1)/2

, (7)

where s, ν and σ2 are likelihood hyperparameters and Γ(·) is the gamma function.
However, once a non-Gaussian likelihood is chosen, many of the GP expres-

sions become intractable. In the present paper, we apply approximate Bayesian
inference methods to overcome those intractabilities. More specifically, we are
interested in the Variational Bayes and the Expectation Propagation algorithms,
briefly presented below.

Variational Bayes (VB) In the case of applying VB to the Student-t likeli-
hood, it must be rewritten as follows [17]:

p(y|t,σ2) = N (y|t,diag(σ2)), p(σ2|α,β) =

N∏
i=1

InvΓ(σ2
i |αi, βi), (8)

where t,σ2 ∈ RN are latent variables, diag(·) builds a diagonal matrix from a
vector and σ2

i has an inverse gamma prior with parameters αi and βi.
The joint posterior of t and σ2 is considered to be factorizable as

p(t,σ2|y,X) ≈ q(t)q(σ2) = N (t|m,A)

(
N∏
i=1

InvΓ(σ2
i |α̃i, β̃i)

)
, (9)

wherem ∈ RN ,A ∈ RN×N and α̃, β̃ ∈ RN are unknown variational parameters.
A lower bound L(q(t)q(σ2)) to the log-marginal likelihood can be found

relating it to the factorized posterior q(t)q(σ2) [14]:

ln p(y|X,θ) = L(q(t)q(σ2)) + KL(q(t)q(σ2)||p(t,σ2|y,X)), (10)

where the last term is the Kullback-Leibler divergence between the approximate
distribution and the true posterior. The maximization of the bound L(q(t)q(σ2))
also minimizes the KL divergence term, improving the approximation [14].

The optimization of the hyperparameters and the latent variables can be
done in an Expectation-Maximization (EM) fashion, as detailed in [17]. Then,
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the moments of the prediction p(t∗|y,X,x∗) = N (t∗|µ∗, σ
2
∗) for a new input x∗

are given by

µ∗ = k∗N (K +Σ)−1y, and σ2
∗ = k∗∗ − k∗N (K +Σ)kN∗, (11)

where Σ = diag(β̃/α̃). Although the calculation of the predictive distribution
of y∗ is intractable, its mean is equal to the previously calculated µ∗.

Expectation Propagation (EP) EP usually works by approximating the true
posterior distribution by a Gaussian which follows a factorized structure [11, 17]:

p(t|y,X) ≈ N (t|0,K)

q(y|X)

N∏
i=1

c(ti, µi, σ
2
i , Zi) = q(t|y,X) = N (t|m,A), (12)

where c(ti, µi, σ
2
i , Zi) = ZiN (ti|µi, σ2

i ) are called site functions. The mean vector
m ∈ RN and covariance matrix A ∈ RN×N of the approximate distribution
may be computed as m = AΣ−1µ and A = (K−1 + Σ−1)−1, where Σ =
diag(σ2

1 , · · · , σ2
N ) and µ = [µ1, · · · , µN ]T .

The prediction p(t∗|y,X,x∗) = N (t∗|µ∗, σ
2
∗) for a new input x∗ is given by

µ∗ = k∗NK
−1m, and σ2

∗ = k∗∗ − k∗N (K−1 −K−1AK−1)kN∗. (13)

Although the predictive distribution of y∗ is intractable, its mean is also µ∗.
The variables µi, σ

2
i and Zi are obtained by iterative moment match, which

simultaneously minimizes the reverse Kullback-Leibler divergence between the
true posterior and the approximate distribution. The convergence is not guar-
anteed, but it has been reported in the literature that EP works well within GP
models [1]. The complete algorithm for a Laplace likelihood is detailed in [17].

3 Experiments

In order to verify the performance of the previously described models in the
task of nonlinear system identification in the presence of outliers, we performed
computational experiments with five artificial datasets, detailed in Tab. 1. The
first four datasets were presented in the seminal work of Narendra et. al. [19].
The fifth dataset was generated following Kocijan et. al. [4].

Besides the Gaussian noise, indicated in the last column of Tab. 1, the esti-
mation data of all datasets was also incrementally corrupted with a number of
outliers equal to 5%, 10% and 20% of the estimation samples. Each randomly
chosen sample was added by a uniformly distributed value U(−My,+My), where
My is the maximum absolute output. We emphasize that only the output values
were corrupted in this step. Such outlier contamination methodology is similar
to the one performed in [20]. The orders Lu and Ly chosen for the regressors
were set to their largest delays presented in the second column of Tab. 1.

We compare the performances of the following GP models: conventional GP,
GP with Student-t likelihood and VB inference (GP-tVB) and GP with Laplace
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Table 1. Details of the five artificial datasets used in the computational experiments.
The indicated noise in the last column is added only to the output of the estimation
data. Note that U(A,B) is a random number uniformly distributed between A and B.

Input/Samples

# Output Estimation Test Noise

1 yi =
yi−1yi−2(yi−1+2.5)

1+y2
i−1+y2

i−2

ui = U(−2, 2) ui = sin(2πi/25) N (0, 0.29)
300 samples 100 samples

2 yi =
yi−1

1+y2
i−1

+ u3
i−1

ui = U(−2, 2)
ui = sin(2πi/25)+

N (0, 0.65)sin(2πi/10)
300 samples 100 samples

3
yi = 0.8yi−1+ ui = U(−1, 1) ui = sin(2πi/25) N (0, 0.07)
(ui−1 − 0.8)ui−1(ui−1 + 0.5) 300 samples 100 samples

4
yi = 0.3yi−1 + 0.6yi−2+ ui = U(−1, 1) ui = sin(2πi/250) N (0, 0.18)
0.3 sin(3πui−1) + 0.1 sin(5πui−1) 500 samples 500 samples

5 yi = yi−1 − 0.5 tanh(yi−1 + u3
i−1)

ui = N (ui|0, 1) ui = N (ui|0, 1)
N (0, 0.0025)−1 ≤ ui ≤ 1 −1 ≤ ui ≤ 1

150 samples 150 samples

likelihood and EP inference (GP-LEP). The obtained root mean square errors
(RMSE) are presented in Tab. 2.

In almost all scenarios with outliers both robust variants presented better
performances than conventional GP. Only in one case, Artificial 3 dataset with
20% of corruption, GP performed better than one of the robust models (GP-
tVB). In the scenarios without outliers, i.e., with Gaussian noise only, the GP
model achieved the best RMSE for Artificial 1 and 4 datasets, but it also per-
formed closer to the robust models for the other datasets with 0% of corruption.

A good resilience to outliers was obtained for Artificial 1 and 2 datasets,
with GP-LEP and GP-tVB models being less affected in the cases with outliers.
The most impressive performance was the one achieved by the GP-tVB model
for all cases of the Artificial 2 dataset, with little RMSE degradation.

For the Artificial 3 dataset, only the GP-tVB model with 5% of outliers
achieved error values close to the scenario without outliers. In the other cases,
both variants, although better than conventional GP model, presented greater
RMSE values than their results for 0% of outliers.

Likewise, in the experiments with Artificial 4 and 5 datasets, we also ob-
served that all models were affected by the corruption of the estimation data,
even with lower quantities of outliers. However, it is important to emphasize that
both GP-tVB and GP-LEP models achieved better RMSE values than conven-
tional GP, often by a large margin, as observed in the Artificial 4 dataset for the
GP-tVB model. Thus, the robust variants can be considered a valid improvement
over the conventional GP model.

Finally, we should mention that during the experiments, the variational ap-
proach of the GP-tVB model has been consistently more stable than the EP
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Table 2. Summary of simulation RMSE without and with outliers in estimation step.

Artificial 1 Artificial 2

% of outliers 0% 5% 10% 20% 0% 5% 10% 20%

GP 0.2134 0.3499 0.3874 0.4877 0.3312 0.3724 0.5266 0.4410
GP-tVB 0.2455 0.3037 0.2995 0.2868 0.3189 0.3247 0.3284 0.3306
GP-LEP 0.2453 0.2724 0.2720 0.3101 0.3450 0.3352 0.3471 0.3963

Artificial 3 Artificial 4

GP 0.1106 0.4411 0.7022 0.6032 0.6384 2.1584 2.2935 2.4640
GP-tVB 0.1097 0.1040 0.3344 0.8691 0.6402 0.7462 2.2220 2.1951
GP-LEP 0.0825 0.3527 0.4481 0.5738 0.9188 1.1297 2.1742 2.3762

Artificial 5

GP 0.0256 0.0751 0.1479 0.1578
GP-tVB 0.0216 0.0542 0.0568 0.1006
GP-LEP 0.0345 0.0499 0.0747 0.1222

algorithm of the GP-LEP model, even with the incorporation of the numerical
safeties suggested by Rasmussen and Williams [1] and Kuss [17], which might be
a decisive factor when choosing which model to apply for system identification.

4 Conclusion

In this paper we evaluated robust Gaussian process models in the task of nonlin-
ear dynamical system identification in the presence of outliers in the data. The
experiments with five artificial datasets considered a GP model with Student-t
likelihood and variational inference (GP-tVB) and a model with Laplace like-
lihood with EP inference (GP-LEP), besides conventional GP with Gaussian
likelihood.

Although the robust variants performed better in the scenarios with outliers,
we cannot state categorically that they were insensitive to the corrupted data.
Both GP-tVB and GP-LEP models obtained considerable lower RMSE for some
cases with outliers. Depending on the task in hand, such degradation may or
may not be tolerable. This observation, as well as some numerical issues encoun-
tered in the EP algorithm, encourages us to further pursue alternative GP-based
models which are more appropriate for robust system identification.
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