Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70692
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorMattos, César Lincoln Cavalcante-
dc.contributor.authorSantos, José Daniel de Alencar-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T16:11:26Z-
dc.date.available2023-02-09T16:11:26Z-
dc.date.issued2015-
dc.identifier.citationMATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70692-
dc.description.abstractSystem identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Conference on Intelligent Data Engineering and Automated Learningpt_BR
dc.subjectRobust system identificationpt_BR
dc.subjectGaussian processpt_BR
dc.subjectApproximate Bayesian inferencept_BR
dc.titleAn empirical evaluation of robust gaussian process models for system identificationpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_eve_gabarreto.pdf271,93 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.