Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70692
Tipo: Artigo de Evento
Título: An empirical evaluation of robust gaussian process models for system identification
Autor(es): Mattos, César Lincoln Cavalcante
Santos, José Daniel de Alencar
Barreto, Guilherme de Alencar
Palavras-chave: Robust system identification;Gaussian process;Approximate Bayesian inference
Data do documento: 2015
Instituição/Editor/Publicador: International Conference on Intelligent Data Engineering and Automated Learning
Citação: MATTOS, C. L. C.; SANTOS, J. D. A.; BARRETO, G. A. An empirical evaluation of robust gaussian process models for system identification. In: INTERNATIONAL CONFERENCE ON INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 16., 2015, Breslávia. Anais... Breslávia, 2015. p. 1-9.
Abstract: System identification comprises a number of linear and non-linear tools for black-box modeling of dynamical systems, with applications in several areas of engineering, control, biology and economy. However, the usual Gaussian noise assumption is not always satisfied, specially if data is corrupted by impulsive noise or outliers. Bearing this in mind, the present paper aims at evaluating how Gaussian Process (GP) models perform in system identification tasks in the presence of outliers. More specifically, we compare the performances of two existing robust GP-based regression models in experiments involving five bench-marking datasets with controlled outlier inclusion. The results indicate that, although still sensitive in some degree to the presence of outliers, the robust models are indeed able to achieve lower prediction errors in corrupted scenarios when compared to conventional GP-based approach.
URI: http://www.repositorio.ufc.br/handle/riufc/70692
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2015_eve_gabarreto.pdf271,93 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.