Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/59412
Type: Artigo de Periódico
Title: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data
Title in English: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data
Authors: Martins, Eduardo Sávio Passos Rodrigues
Stedinger, Jery Russell
Keywords: Inundações;Cheias;Parâmetros
Issue Date: 2000
Publisher: Water Resources Research
Citation: MARTINS, Eduardo Savio Passos Rodrigues; STEDINGER, Jery Russell. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, United States, v. 36, n.3, p. 737-744, 2000.
Abstract: The three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for −0.25 < κ < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter κ can be generated. Use of a Bayesian prior distribution to restrict κ values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for − 0.4 ≤ κ ≤ 0.
URI: http://www.repositorio.ufc.br/handle/riufc/59412
ISSN: 1944-7973
Appears in Collections:LABOMAR - Artigos publicados em revistas científicas

Files in This Item:
File Description SizeFormat 
2000_art_esmartins3.pdf798,97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.