Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/59412
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Martins, Eduardo Sávio Passos Rodrigues | - |
dc.contributor.author | Stedinger, Jery Russell | - |
dc.date.accessioned | 2021-07-09T11:22:25Z | - |
dc.date.available | 2021-07-09T11:22:25Z | - |
dc.date.issued | 2000 | - |
dc.identifier.citation | MARTINS, Eduardo Savio Passos Rodrigues; STEDINGER, Jery Russell. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research, United States, v. 36, n.3, p. 737-744, 2000. | pt_BR |
dc.identifier.issn | 1944-7973 | - |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/59412 | - |
dc.description.abstract | The three-parameter generalized extreme-value (GEV) distribution has found wide application for describing annual floods, rainfall, wind speeds, wave heights, snow depths, and other maxima. Previous studies show that small-sample maximum-likelihood estimators (MLE) of parameters are unstable and recommend L moment estimators. More recent research shows that method of moments quantile estimators have for −0.25 < κ < 0.30 smaller root-mean-square error than L moments and MLEs. Examination of the behavior of MLEs in small samples demonstrates that absurd values of the GEV-shape parameter κ can be generated. Use of a Bayesian prior distribution to restrict κ values to a statistically/physically reasonable range in a generalized maximum likelihood (GML) analysis eliminates this problem. In our examples the GML estimator did substantially better than moment and L moment quantile estimators for − 0.4 ≤ κ ≤ 0. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | Water Resources Research | pt_BR |
dc.subject | Inundações | pt_BR |
dc.subject | Cheias | pt_BR |
dc.subject | Parâmetros | pt_BR |
dc.title | Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data | pt_BR |
dc.type | Artigo de Periódico | pt_BR |
dc.title.en | Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data | pt_BR |
Aparece nas coleções: | LABOMAR - Artigos publicados em revistas científicas |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2000_art_esmartins3.pdf | 798,97 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.