Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/59255
Tipo: Artigo de Periódico
Título: Rainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Models
Título em inglês: Rainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Models
Autor(es): Dantas, Leydson G.
Santos, Carlos A. C. dos
Olinda, Ricardo A. de
Brito, José I. B. de
Santos, Celso A. G. Santos
Martins, Eduardo Sávio Passos Rodrigues
Oliveira, Gabriel de
Brunsell, Nathaniel A.
Palavras-chave: Fontes de água;Recursos-Água;Brasil, Paraíba (PB)
Data do documento: 2020
Instituição/Editor/Publicador: waters
Citação: DANTAS, Leydson G.; SANTOS, Carlos A. C. dos; OLINDA, Ricardo A. de; BRITO, José I. B. de; SANTOS, Celso A. G.; OLIVEIRA, Gabriel de; BRUNSELL, Nathaniel A.. Rainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Models. Water, United States, v. 12, p. 2478-2504, 2020.
Abstract: The state of Paraíba is part of the semi-arid region of Brazil, where severe droughts have occurred in recent years, resulting in significant socio-economic losses associated with climate variability. Thus, understanding to what extent precipitation can be influenced by sea surface temperature (SST) patterns in the tropical region can help, along with a monitoring system, to set up an early warning system, the first pillar in drought management. In this study, Generalized Additive Models for Location, Scale and Shape (GAMLSS) were used to filter climatic indices with higher predictive efficiency and, as a result, to perform rainfall predictions. The results show the persistent influence of tropical SST patterns in Paraíba rainfall, the tropical Atlantic Ocean impacting the rainfall distribution more effectively than the tropical Pacific Ocean. The GAMLSS model showed predictive capability during summer and southern autumn in Paraíba, highlighting the JFM (January, February and March), FMA (February, March and April), MAM (March, April and May), and AMJ (April, May and June) trimesters as those with the highest predictive potential. The methodology demonstrates the ability to be integrated with regional forecasting models (ensemble). Such information has the potential to inform decisions in multiple sectors, such as agriculture and water resources, aiming at the sustainable management of water resources and resilience to climate risk.
URI: http://www.repositorio.ufc.br/handle/riufc/59255
ISSN: 0043-1354
Aparece nas coleções:LABOMAR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_lgdantas.pdf5,82 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.