Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/59255
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorDantas, Leydson G.-
dc.contributor.authorSantos, Carlos A. C. dos-
dc.contributor.authorOlinda, Ricardo A. de-
dc.contributor.authorBrito, José I. B. de-
dc.contributor.authorSantos, Celso A. G. Santos-
dc.contributor.authorMartins, Eduardo Sávio Passos Rodrigues-
dc.contributor.authorOliveira, Gabriel de-
dc.contributor.authorBrunsell, Nathaniel A.-
dc.date.accessioned2021-06-29T12:38:11Z-
dc.date.available2021-06-29T12:38:11Z-
dc.date.issued2020-
dc.identifier.citationDANTAS, Leydson G.; SANTOS, Carlos A. C. dos; OLINDA, Ricardo A. de; BRITO, José I. B. de; SANTOS, Celso A. G.; OLIVEIRA, Gabriel de; BRUNSELL, Nathaniel A.. Rainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Models. Water, United States, v. 12, p. 2478-2504, 2020.pt_BR
dc.identifier.issn0043-1354-
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/59255-
dc.description.abstractThe state of Paraíba is part of the semi-arid region of Brazil, where severe droughts have occurred in recent years, resulting in significant socio-economic losses associated with climate variability. Thus, understanding to what extent precipitation can be influenced by sea surface temperature (SST) patterns in the tropical region can help, along with a monitoring system, to set up an early warning system, the first pillar in drought management. In this study, Generalized Additive Models for Location, Scale and Shape (GAMLSS) were used to filter climatic indices with higher predictive efficiency and, as a result, to perform rainfall predictions. The results show the persistent influence of tropical SST patterns in Paraíba rainfall, the tropical Atlantic Ocean impacting the rainfall distribution more effectively than the tropical Pacific Ocean. The GAMLSS model showed predictive capability during summer and southern autumn in Paraíba, highlighting the JFM (January, February and March), FMA (February, March and April), MAM (March, April and May), and AMJ (April, May and June) trimesters as those with the highest predictive potential. The methodology demonstrates the ability to be integrated with regional forecasting models (ensemble). Such information has the potential to inform decisions in multiple sectors, such as agriculture and water resources, aiming at the sustainable management of water resources and resilience to climate risk.pt_BR
dc.language.isoenpt_BR
dc.publisherwaterspt_BR
dc.subjectFontes de águapt_BR
dc.subjectRecursos-Águapt_BR
dc.subjectBrasil, Paraíba (PB)pt_BR
dc.titleRainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Modelspt_BR
dc.typeArtigo de Periódicopt_BR
dc.title.enRainfall Prediction in the State of Paraíba, Northeastern Brazil Using Generalized Additive Modelspt_BR
Aparece nas coleções:LABOMAR - Artigos publicados em revistas científicas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2020_art_lgdantas.pdf5,82 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.