Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/80743
Tipo: Artigo de Periódico
Título : Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA
Título en inglés: Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA
Autor : Feitosa, Milena Monteiro
Lemos, José de Jesus Sousa
Palabras clave en inglés: Brazilian agriculture;EMBRAPA;Change in land use;Cerrado biome;Evolution of GHG emissions
Áreas de Conocimiento - CNPq: CNPQ::CIENCIAS AGRARIAS::AGRONOMIA
Fecha de publicación : 2025
Editorial : Global Journal of Human Social Science: e Economics
Citación : FEITOSA, Milena Monteiro; LEMOS, José de Jesus Sousa. Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA. Global Journal of Human Social Science: e Economics, United States of America, v. 25, Issue 1, p. 1-13, 2025.
Abstract: Greenhouse gas (GHG) emissions in agricultural production represent a global environmental challenge, and it is necessary to understand the factors that influence them to develop sustainable practices. The general objective of this research is to investigate some of the factors that probably influence GHG emissions and reductions in agricultural production in the MATOPIBA region of Brazil between 2006 and 2017. A hybrid methodology was used, and the first stage used linear models (decomposition into principal components) and non-linear models (artificial neural networks) to determine the relationships that should exist between the dependent variable (GHG emissions) and 11 variables. The data was obtained from the 2006 and 2017 Brazilian Agricultural Census, MapBiomas, SEEG, and NOAA. The results showed that of the 373 municipalities that make up MATOPIBA, only 100 did not see an increase in GHG emissions between 2006 and 2017. The principal component decomposition method reduced the 11 initial variables into 3 orthogonal and unobserved variables. In one of the unobserved variables, 4 of the five variables that are supposed to cause a reduction in GHG emissions were brought together. The 5 variables thought to have caused an increase in GHG emissions were condensed into 5.
URI : http://repositorio.ufc.br/handle/riufc/80743
ISSN : 2249-460X
ORCID del autor: https://orcid.org/0000-0002-3748-2395
https://orcid.org/0000-0003-1460-0325
Lattes del autor: http://lattes.cnpq.br/2761723037820370
http://lattes.cnpq.br/5498218246827183
Derechos de acceso: Acesso Aberto
Aparece en las colecciones: DEA - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2025_art_mmfeitosa.pdf1,04 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.