Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/80743
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFeitosa, Milena Monteiro-
dc.contributor.authorLemos, José de Jesus Sousa-
dc.date.accessioned2025-05-06T14:48:48Z-
dc.date.available2025-05-06T14:48:48Z-
dc.date.issued2025-
dc.identifier.citationFEITOSA, Milena Monteiro; LEMOS, José de Jesus Sousa. Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA. Global Journal of Human Social Science: e Economics, United States of America, v. 25, Issue 1, p. 1-13, 2025.pt_BR
dc.identifier.issn2249-460X-
dc.identifier.urihttp://repositorio.ufc.br/handle/riufc/80743-
dc.description.abstractGreenhouse gas (GHG) emissions in agricultural production represent a global environmental challenge, and it is necessary to understand the factors that influence them to develop sustainable practices. The general objective of this research is to investigate some of the factors that probably influence GHG emissions and reductions in agricultural production in the MATOPIBA region of Brazil between 2006 and 2017. A hybrid methodology was used, and the first stage used linear models (decomposition into principal components) and non-linear models (artificial neural networks) to determine the relationships that should exist between the dependent variable (GHG emissions) and 11 variables. The data was obtained from the 2006 and 2017 Brazilian Agricultural Census, MapBiomas, SEEG, and NOAA. The results showed that of the 373 municipalities that make up MATOPIBA, only 100 did not see an increase in GHG emissions between 2006 and 2017. The principal component decomposition method reduced the 11 initial variables into 3 orthogonal and unobserved variables. In one of the unobserved variables, 4 of the five variables that are supposed to cause a reduction in GHG emissions were brought together. The 5 variables thought to have caused an increase in GHG emissions were condensed into 5.pt_BR
dc.language.isoenpt_BR
dc.publisherGlobal Journal of Human Social Science: e Economicspt_BR
dc.rightsAcesso Abertopt_BR
dc.titleHybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBApt_BR
dc.typeArtigo de Periódicopt_BR
dc.title.enHybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBApt_BR
dc.subject.enBrazilian agriculturept_BR
dc.subject.enEMBRAPApt_BR
dc.subject.enChange in land usept_BR
dc.subject.enCerrado biomept_BR
dc.subject.enEvolution of GHG emissionspt_BR
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::AGRONOMIApt_BR
local.author.orcidhttps://orcid.org/0000-0002-3748-2395pt_BR
local.author.orcidhttps://orcid.org/0000-0003-1460-0325pt_BR
local.author.latteshttp://lattes.cnpq.br/2761723037820370pt_BR
local.author.latteshttp://lattes.cnpq.br/5498218246827183pt_BR
local.date.available2025-
Aparece en las colecciones: DEA - Artigos publicados em revista científica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2025_art_mmfeitosa.pdf1,04 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.