Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/80743Registro completo de metadatos
| Campo DC | Valor | Lengua/Idioma |
|---|---|---|
| dc.contributor.author | Feitosa, Milena Monteiro | - |
| dc.contributor.author | Lemos, José de Jesus Sousa | - |
| dc.date.accessioned | 2025-05-06T14:48:48Z | - |
| dc.date.available | 2025-05-06T14:48:48Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.citation | FEITOSA, Milena Monteiro; LEMOS, José de Jesus Sousa. Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA. Global Journal of Human Social Science: e Economics, United States of America, v. 25, Issue 1, p. 1-13, 2025. | pt_BR |
| dc.identifier.issn | 2249-460X | - |
| dc.identifier.uri | http://repositorio.ufc.br/handle/riufc/80743 | - |
| dc.description.abstract | Greenhouse gas (GHG) emissions in agricultural production represent a global environmental challenge, and it is necessary to understand the factors that influence them to develop sustainable practices. The general objective of this research is to investigate some of the factors that probably influence GHG emissions and reductions in agricultural production in the MATOPIBA region of Brazil between 2006 and 2017. A hybrid methodology was used, and the first stage used linear models (decomposition into principal components) and non-linear models (artificial neural networks) to determine the relationships that should exist between the dependent variable (GHG emissions) and 11 variables. The data was obtained from the 2006 and 2017 Brazilian Agricultural Census, MapBiomas, SEEG, and NOAA. The results showed that of the 373 municipalities that make up MATOPIBA, only 100 did not see an increase in GHG emissions between 2006 and 2017. The principal component decomposition method reduced the 11 initial variables into 3 orthogonal and unobserved variables. In one of the unobserved variables, 4 of the five variables that are supposed to cause a reduction in GHG emissions were brought together. The 5 variables thought to have caused an increase in GHG emissions were condensed into 5. | pt_BR |
| dc.language.iso | en | pt_BR |
| dc.publisher | Global Journal of Human Social Science: e Economics | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.title | Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA | pt_BR |
| dc.type | Artigo de Periódico | pt_BR |
| dc.title.en | Hybrid model of artificial neural networks and principal component decomposition for predicting greenhouse gas emissions in the brazilian region of MATOPIBA | pt_BR |
| dc.subject.en | Brazilian agriculture | pt_BR |
| dc.subject.en | EMBRAPA | pt_BR |
| dc.subject.en | Change in land use | pt_BR |
| dc.subject.en | Cerrado biome | pt_BR |
| dc.subject.en | Evolution of GHG emissions | pt_BR |
| dc.subject.cnpq | CNPQ::CIENCIAS AGRARIAS::AGRONOMIA | pt_BR |
| local.author.orcid | https://orcid.org/0000-0002-3748-2395 | pt_BR |
| local.author.orcid | https://orcid.org/0000-0003-1460-0325 | pt_BR |
| local.author.lattes | http://lattes.cnpq.br/2761723037820370 | pt_BR |
| local.author.lattes | http://lattes.cnpq.br/5498218246827183 | pt_BR |
| local.date.available | 2025 | - |
| Aparece en las colecciones: | DEA - Artigos publicados em revista científica | |
Ficheros en este ítem:
| Fichero | Descripción | Tamaño | Formato | |
|---|---|---|---|---|
| 2025_art_mmfeitosa.pdf | 1,04 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.