Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/78407
Tipo: Dissertação
Título: QoS-constrained radio resource allocation on OFDMA cooperative networks and on energy-harvesting-aided massive MIMO systems
Título em inglês: QOS-CONSTRAINED RADIO RESOURCE ALLOCATION ON OFDMA COOPERATIVE NETWORKS AND ON ENERGY-HARVESTING-AIDED MASSIVE MIMO SYSTEMS
Título em francês: QoS-constrained radio resource allocation on ofdma cooperative networks and on energy-harvesting-aided massive mimo systems
Autor(es): Saraiva, Juno Vitorino
Orientador: Lima, Francisco Rafael Marques
Palavras-chave em português: Alocação de recursos de rádio;Qualidade de serviço;Redes cooperativas;Múltiplos relays;Eficiência energética;Justiça max-min;Teoria da programação fracionária e programação fracionária generalizada;MIMO massivo;Colheita de energia
Palavras-chave em inglês: Radio resource allocation;Quality of service;Cooperative networks;Multiple relays;Energy efficiency;Max-min fairness;Theory of fractional programming and generalized fractional programming;Massive MIMO;Energy harvesting
CNPq: CNPQ::ENGENHARIAS
Data do documento: 2019
Citação: SARAIVA, Juno Vitorino. QoS-constrained radio resource allocation on OFDMA cooperative networks and on energy-harvesting-aided massive MIMO systems. 76f. 2019. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica e de Computação), Universidade Federal do Ceará, Campus de Sobral, 2019.
Resumo: Nesta dissertação de mestrado, primeiramente estudamos a alocação de recursos de rádio (RRA, do inglês radio resource allocation) em redes cooperativas com a presença de múltiplos relays e múltiplos nós de destino, empregando OFDMA (orthogonal frequency-division multiple access). O RRA contempla o pareamento e o assinalamento de subportadoras, a seleção de relays e também a alocação de potência transmitida. Em detalhes, investigamos o impacto da qualidade de serviço (QoS, do inglês quality of service) ao maximizar a eficiência energética (EE, do inglês energy efficiency). Os três problemas estudados são: minimização da potência total de transmissão, maximização da EE total, e a maximização da mínima EE individual entre todos os nós de destino. Este último problema é capaz de oferecer justiça ao sistema em termos de EE. Em todos os três problemas, assumimos restrições de QoS. Apesar de alguns desses problemas serem fracionários e não lineares, fornecemos soluções ótimas usando algoritmos iterativos baseados na teoria da programação fracionária e programação fracionária generalizada. Além disso, apresentamos e demonstramos uma interessante propriedade que explora o uso do protocolo decodifica e encaminha (DF, do inglês decode and forward) presente nos relays deste trabalho, e mostramos como essa propriedade pode ser aplicada aos três problemas abordados, a fim de simplificá-los. Com isso, conseguimos reduzir consideravelmente o número de variáveis e restrições desses problemas e, consequentemente, reduzir suas complexidades computacionais. Finalmente, através de simulações computacionais, estudamos o desempenho das soluções fornecidas em termos de EE total, justiça de EE e QoS. Parte desta dissertação também é dedicada a investigar a alocação de potência transmitida em sistemas MIMO massivo distribuídos auxiliados por colheita de energia (EH, do inglês energy harvesting). Em nosso modelo, o sistema MIMO massivo é representado por um conjunto muito grande de antenas distribuídas aleatoriamente ao longo de uma determinada área. Cada antena está acoplada a um ponto de acesso de energia híbrida (H-AP, do inglês hybrid energy access point), que simultaneamente serve a um número muito menor de usuários, cada um com uma única antena, sobre os mesmos recursos de tempo e frequência. Um H-AP consiste em APs (do inglês, access points) que são energizados tanto por uma fonte independente de energia renovável quanto por energia convencional da rede elétrica. O uso da rede elétrica compensa a intermitência e a aleatoriedade das fontes renováveis e permite garantias de QoS. Em cenários offline, onde se assume o conhecimento prévio da energia colhida (não causal), investigamos particularmente o problema de justiça max-min, maximizando a mínima razão sinal-interferência do sistema (SINR, do inglês signal to interference-plus-noise ratio), considerando também requisitos de QoS. Também modelamos uma restrição em que o operador do sistema pode controlar a quantidade de energia consumida da rede elétrica e das fontes renováveis. Dado que o problema formulado tem natureza fracionária, garantimos sua solução ótima usando novamente a teoria da programação fracionária generalizada. No entanto, aqui também fornecemos uma abordagem alternativa para resolver de maneira ótima esse mesmo problema. Através de resultados numéricos, mostramos que, no cenário simulado, a solução alternativa é capaz de apresentar uma perda de desempenho em relação à solução ótima de apenas 10−1% quando configurada com 10 iterações. Além disso, essa solução alternativa também é capaz de acelerar o algoritmo generalizado de Dinkelbach e oferecer um interessante compromisso entre consumo de energia e perda de desempenho em relação à solução ótima. Por fim, discutimos o impacto das variáveis do problema sobre o desempenho do sistema.
Abstract: In this master’s thesis, we first study radio resource allocation (RRA) for cooperative networks with multiple relays and destination nodes employing orthogonal frequency-division multiple access (OFDMA). RRA in our scenario includes relay selection, subcarrier pairing, and assignment, as well as transmit power allocation. Specifically, we analyze the impact of quality of service (QoS) when maximizing energy efficiency (EE). Three different problems are addressed in the first part of this work: total EE maximization, total power minimization, and minimum individual EE maximization. The last problem ensures fairness in the system regarding EE. In all three problems, we assume QoS constraints at the destination nodes. Although some of these problems are fractional and non-linear, we provide optimal solutions using iterative algorithms based on the theory of fractional programming and generalized fractional programming. Furthermore, we present and demonstrate an interesting property that exploits the use of the decode and forward (DF) protocol in the relay, and we show how it can be applied in the three problems discussed to simplify them. As a result, we can significantly reduce the number of variables and constraints in these problems, thereby reducing their computational complexity. Finally, through simulation results, we evaluate the performance of the proposed solutions in terms of total EE, EE fairness, and QoS. Part of this master’s thesis is dedicated to investigating transmit power allocation in an energy harvesting (EH)-aided distributed massive multiple input multiple output (MIMO) system. This distributed massive MIMO system involves a random distribution of a large number of singleantenna hybrid energy access points (H-APs) that simultaneously serve a much smaller number of single-antenna users over the same time/frequency resources. Additionally, we consider that each H-AP is powered by both an independent EH source and the electrical grid. The use of the electrical grid compensates for the intermittency and randomness of EH sources and allows for the provision of QoS guarantees. In offline scenarios, where prior knowledge of the EH profile is assumed (non-causal), we specifically investigate the max-min fairness problem by maximizing the minimum system signal-to-interference-plus-noise ratio (SINR) while fulfilling QoS requirements. We also model a problem constraint that allows the system operator to control the amount of energy consumed from the grid and renewable sources. Given that the formulated problem has a fractional framework, we guarantee its optimal solution by re-employing the theory of generalized fractional programming. However, we also provide an alternative approach to solve this problem optimally. Through numerical results, we show that in the simulated scenario, the alternative solution presents a performance loss of only 10−1% compared to the optimal solution when configured for 10 iterations. Moreover, it also accelerates the convergence of the generalized Dinkelbach algorithm and offers an interesting trade-off between energy consumption and performance loss relative to the optimal solution. Lastly, we discuss the impact of the problem variables on system performance.
URI: http://repositorio.ufc.br/handle/riufc/78407
ORCID do(s) Autor(es): https://orcid.org/0000-0001-5044-6009
Currículo Lattes do(s) Autor(es): http://lattes.cnpq.br/2574782084008151
ORCID do Orientador: https://orcid.org/0000-0002-4115-1935
Currículo Lattes do Orientador: http://lattes.cnpq.br/4983411711055340
Tipo de Acesso: Acesso Aberto
Aparece nas coleções:PPGEEC - SOBRAL - Dissertações defendidas na UFC

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2019_dis_jvsaraiva.pdf1,03 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.