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RESUMO

Nesta dissertação de mestrado, primeiramente estudamos a alocação de recursos de rádio (RRA,

do inglês radio resource allocation) em redes cooperativas com a presença de múltiplos relays e

múltiplos nós de destino, empregando OFDMA (orthogonal frequency-division multiple access).

O RRA contempla o pareamento e o assinalamento de subportadoras, a seleção de relays e

também a alocação de potência transmitida. Em detalhes, investigamos o impacto da qualidade

de serviço (QoS, do inglês quality of service) ao maximizar a eficiência energética (EE, do

inglês energy efficiency). Os três problemas estudados são: minimização da potência total de

transmissão, maximização da EE total, e a maximização da mínima EE individual entre todos

os nós de destino. Este último problema é capaz de oferecer justiça ao sistema em termos

de EE. Em todos os três problemas, assumimos restrições de QoS. Apesar de alguns desses

problemas serem fracionários e não lineares, fornecemos soluções ótimas usando algoritmos

iterativos baseados na teoria da programação fracionária e programação fracionária generalizada.

Além disso, apresentamos e demonstramos uma interessante propriedade que explora o uso do

protocolo decodifica e encaminha (DF, do inglês decode and forward) presente nos relays deste

trabalho, e mostramos como essa propriedade pode ser aplicada aos três problemas abordados, a

fim de simplificá-los. Com isso, conseguimos reduzir consideravelmente o número de variáveis

e restrições desses problemas e, consequentemente, reduzir suas complexidades computacionais.

Finalmente, através de simulações computacionais, estudamos o desempenho das soluções

fornecidas em termos de EE total, justiça de EE e QoS.

Parte desta dissertação também é dedicada a investigar a alocação de potência transmitida em

sistemas MIMO massivo distribuídos auxiliados por colheita de energia (EH, do inglês energy

harvesting). Em nosso modelo, o sistema MIMO massivo é representado por um conjunto muito

grande de antenas distribuídas aleatoriamente ao longo de uma determinada área. Cada antena

está acoplada a um ponto de acesso de energia híbrida (H-AP, do inglês hybrid energy access

point), que simultaneamente serve a um número muito menor de usuários, cada um com uma

única antena, sobre os mesmos recursos de tempo e frequência. Um H-AP consiste em APs (do

inglês, access points) que são energizados tanto por uma fonte independente de energia renovável

quanto por energia convencional da rede elétrica. O uso da rede elétrica compensa a intermitência

e a aleatoriedade das fontes renováveis e permite garantias de QoS. Em cenários offline, onde se

assume o conhecimento prévio da energia colhida (não causal), investigamos particularmente

o problema de justiça max-min, maximizando a mínima razão sinal-interferência do sistema



(SINR, do inglês signal to interference-plus-noise ratio), considerando também requisitos de QoS.

Também modelamos uma restrição em que o operador do sistema pode controlar a quantidade de

energia consumida da rede elétrica e das fontes renováveis. Dado que o problema formulado tem

natureza fracionária, garantimos sua solução ótima usando novamente a teoria da programação

fracionária generalizada. No entanto, aqui também fornecemos uma abordagem alternativa para

resolver de maneira ótima esse mesmo problema. Através de resultados numéricos, mostramos

que, no cenário simulado, a solução alternativa é capaz de apresentar uma perda de desempenho

em relação à solução ótima de apenas 10−1% quando configurada com 10 iterações. Além disso,

essa solução alternativa também é capaz de acelerar o algoritmo generalizado de Dinkelbach e

oferecer um interessante compromisso entre consumo de energia e perda de desempenho em

relação à solução ótima. Por fim, discutimos o impacto das variáveis do problema sobre o

desempenho do sistema.

Palavras-chave: Alocação de recursos de rádio; Qualidade de serviço; Redes cooperativas;

Múltiplos relays; Eficiência energética; Justiça max-min; Teoria da programação fracionária e

programação fracionária generalizada; MIMO massivo; Colheita de energia.



ABSTRACT

In this master’s thesis, we first study radio resource allocation (RRA) for cooperative networks

with multiple relays and destination nodes employing orthogonal frequency-division multiple ac-

cess (OFDMA). RRA in our scenario includes relay selection, subcarrier pairing, and assignment,

as well as transmit power allocation. Specifically, we analyze the impact of quality of service

(QoS) when maximizing energy efficiency (EE). Three different problems are addressed in the

first part of this work: total EE maximization, total power minimization, and minimum individual

EE maximization. The last problem ensures fairness in the system regarding EE. In all three

problems, we assume QoS constraints at the destination nodes. Although some of these problems

are fractional and non-linear, we provide optimal solutions using iterative algorithms based on

the theory of fractional programming and generalized fractional programming. Furthermore, we

present and demonstrate an interesting property that exploits the use of the decode and forward

(DF) protocol in the relay, and we show how it can be applied in the three problems discussed to

simplify them. As a result, we can significantly reduce the number of variables and constraints

in these problems, thereby reducing their computational complexity. Finally, through simulation

results, we evaluate the performance of the proposed solutions in terms of total EE, EE fairness,

and QoS.

Part of this master’s thesis is dedicated to investigating transmit power allocation in an energy

harvesting (EH)-aided distributed massive multiple input multiple output (MIMO) system. This

distributed massive MIMO system involves a random distribution of a large number of single-

antenna hybrid energy access points (H-APs) that simultaneously serve a much smaller number

of single-antenna users over the same time/frequency resources. Additionally, we consider that

each H-AP is powered by both an independent EH source and the electrical grid. The use of

the electrical grid compensates for the intermittency and randomness of EH sources and allows

for the provision of QoS guarantees. In offline scenarios, where prior knowledge of the EH

profile is assumed (non-causal), we specifically investigate the max-min fairness problem by

maximizing the minimum system signal-to-interference-plus-noise ratio (SINR) while fulfilling

QoS requirements. We also model a problem constraint that allows the system operator to control

the amount of energy consumed from the grid and renewable sources. Given that the formulated

problem has a fractional framework, we guarantee its optimal solution by re-employing the

theory of generalized fractional programming. However, we also provide an alternative approach

to solve this problem optimally. Through numerical results, we show that in the simulated



scenario, the alternative solution presents a performance loss of only 10−1% compared to the

optimal solution when configured for 10 iterations. Moreover, it also accelerates the convergence

of the generalized Dinkelbach algorithm and offers an interesting trade-off between energy

consumption and performance loss relative to the optimal solution. Lastly, we discuss the impact

of the problem variables on system performance.

Keywords: Radio resource allocation; Quality of service; Cooperative networks; Multiple

relays; Energy efficiency; Max-min fairness; Theory of fractional programming and generalized

fractional programming; Massive MIMO; Energy harvesting.
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1 INTRODUCTION

This is an introductory chapter where we present the motivation and scope of this

master’s thesis in Section 1.1. After that, we present basic concepts and background about

relevant topics to this thesis in Section 1.2, while the state of the art is reviewed in Section 1.3.

Our main contributions and thesis organization are depicted in Section 1.4. Finally, the scientific

production during the master’s course is presented in Section 1.5.

1.1 Thesis Scope and Motivation

The exponential increase of data traffic and number of devices in mobile networks

has led to an intense use of radio resources such as transmit power and frequency chunks.

Particularly, the increase in transmit power leads to an intense energy consumption. Indeed,

the increased demand for radio resources has become a growing concern since it is expected

that the demand for wireless throughput, both mobile and fixed, is continuously increasing.

According to Ericsson in (Ericsson, 2019), in the fourth quarter of 2018 the total number of

mobile subscriptions was around 7.9 billion and the monthly mobile data traffic grew close to

88% between the fourth quarters of 2017 and 2018. Meanwhile, in (Gelenbe; Caseau, 2015) and

(Consortium et al., 2013), it was reported that almost 5% of the global energy is consumed by

information and communication technologies (ICT) industry. Furthermore, ICT industry releases

approximately 2% of the total CO2 into the atmosphere, which currently is considered as a major

threat for the environment. Although the previous CO2 emission percentage may seem small,

due to the advent of the 5th generation (5G) cellular mobile communications in the coming

years, these statistics are expected to increase further and this can contribute to a sharp growth of

energy consumption and greenhouse emission, besides billions of dollars spent on electricity.

A promising solution to these issues lies in optimizing the energy efficiency (EE)

of ICT systems, which can be defined as the ratio between the system throughput and the

corresponding energy consumed. Energy efficient ICT systems can be not only environment-

friendly but also can achieve great financial savings by reducing operational costs. As a result,

the concept of EE is nowadays an important performance metric when designing such systems

and, therefore, improving EE of ICT systems becomes essential for the future of wireless

communications. As stated by international telecommunications union (ITU) in its report (ITU-

R Rec. M.2083, 2015), one of the 5G requirements is to increase the EE by 100 times and,
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consequently, research towards designing energy-aware architectures has drawn extensive interest

in the existing literature (Singh et al., 2017).

Current ICT systems are predominantly powered by traditional carbon-based energy

sources and using renewable energy, i.e., drawing energy from the environment, is particularly

appealing as it theoretically constitutes an everlasting energy source. Furthermore, given that

renewable energy is generally clean and cheap, it can reduce the carbon footprint and can reduce

substantially the operational expenditures (OPEX) of the service providers. Thus, driven by

environmental concerns, EH can be a promising technique towards green communications.

Consequently, the goal is that ICT systems should not only be energy efficient when providing

service coverage, but should also be self-sustainable. Nevertheless, the harvested energy is in

general random in nature and the introduction of EH capabilities for ICT systems poses many

new challenges for radio resource allocation (RRA) algorithm design (Jangsher et al., 2015).

In this context, cooperative networks and distributed massive MIMO systems have

also received significant attention since these technologies are the basis of the 4th generation (4G)

and 5G networks, respectively (Li et al., 2011; Ngo et al., 2017). Both technologies also present

a huge potential to meet the EE required by modern networks. However, both technologies also

add a higher complexity to the network because of the increased flexibility in radio resource

management. As examples, cooperative networks allow the selection of the most suitable relay to

forward information while massive MIMO provides huge multiplexing gains. Moreover, quality

of service (QoS) fulfillment and fairness are other objectives that can be optimized through RRA

(Huaizhou et al., 2014).

Motivated by this, in this master’s thesis we focus on RRA problems that cover

QoS fulfillment in cooperative networks and EH-aided distributed massive MIMO systems.

Objectives such as fairness provision and EE maximization are studied.

1.2 Background

This section is devoted to the introduction of basic concepts that are relevant for the

remaining of this thesis. In the following sections we introduce the orthogonal frequency division

multiplexing (OFDM) and its multiple access method orthogonal frequency division multiple

access (OFDMA), RRA, cooperative networks, massive MIMO systems and EH communications.
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1.2.1 OFDM and OFDMA

OFDM and OFDMA are the modulation technique and the multiple access strategy

adopted in the current 4G. Basically, OFDMA is an extension of OFDM and works as a multi-

access technique by allocating different groups of orthogonal subcarriers to distinct terminals. In

turn, OFDM emerged as an evolution of the traditional frequency division multiplexing (FDM)

technique and it was initially proposed in 1968 (Chang; Gibby, 1968).

OFDM consists of the parallel transmission of data in several narrow band subcarriers

in which the data rate per subcarrier is decreased as the number of subcarriers is augmented.

Decreasing the data rate per subcarrier makes the system more robust to frequency-selectivity.

Thus, working with narrow channels rather than a single wideband channel makes the system

more immune to channel effects.

The main characteristic of OFDM is the use of precisely spaced subcarriers so that

they are mathematically orthogonal. This generates spectral overlap and ensures significant

bandwidth savings. Even with spectral overlap, the information driven by each of these subcarri-

ers can be separated according to the scheme shown in Figure 1. As it can be seen, generation and

reception of OFDM signals can be done employing inverse fast fourier transform (IFFT) and fast

fourier transform (FFT) algorithms, respectively. A guard interval is used as a way to eliminate

intersymbol interference which is very damaging for the received OFDM symbols. Moreover, the

guard interval as a cyclic prefix keeps the orthogonal subcarriers even with the channel effects.

According to this, the reception for OFDM symbols requires simple equalization. Therefore, in

OFDM, the benefits of the use of a cyclic prefix are twofold: mitigate intersymbol interference

(as a guard time) and avoid the interference among subcarriers (keeping them orthogonal at

reception). However, although the cyclic prefix brings all these advantages and robustness to the

OFDM, it is an overhead signal since it is a redundant information that wastes bandwidth and

energy (Browning et al., 2017).

Other problems even more serious such as high peak-to-average-power-ratio (PAPR)

are present in OFDM systems, but this problem is not exclusive for OFDM and, therefore, it

is present in any other multi-carrier modulation. In addition, it is possible to use simple and

efficient techniques to reduce PAPR in OFDM systems in order to significantly improve signal

quality. However, OFDM systems are quite sensitive to frequency deviations since the pulse

shaping has high out-of-band emission. In general, this may not be important at high frequencies

where large amount of bandwidth is available (Zaidi et al., 2016).
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Figura 1 – A simple OFDM transmission sketch.
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OFDM is widely employed nowadays and for 5G, 3rd generation partnership project

(3GPP) has chosen the OFDM waveform from several waveform proposals (Zaidi et al., 2016).

This is because OFDM has some advantages that are appealing for future mobile networks. These

advantages include high spectral efficiency despite the use of the cyclic prefix, high compatibility

with MIMO systems, which allows to further increase spectral efficiency and coverage area, low

implementation complexity and simple equalization process as discussed above. In addition,

OFDM has robustness to channel frequency-selectivity, robustness to channel time-selectivity,

flexibility, scalability, among others (Zaidi et al., 2016).

1.2.2 Radio Resource Allocation

The rapid increase of the number of connected devices and the demands for high-

speed multimedia communications stand in clear contrast to the rather limited radio resources.

In this scenario, a possible solution is to use the scarce available radio resources in an efficient

way by providing intelligent RRA algorithms and frameworks. Basically, RRA is responsible for

the management of the system resources in the radio access networks with diverse objectives

such as spectral and/or energy efficiences maximization and constraints such as fairness and

QoS. (Chen et al., 2012). We have been successfully applied to manage the resources of mobile

networks along several generations and we do believe that it will still play a relevant role in

modern networks.

Moreover, mobile networks need to face several other challenges that necessarily

require well planned RRA designs. During the handover process, for example, resources should

be allocated or reserved in advance in order to maintain connection or certain QoS requirements

for a given terminal, i.e., an effective resource management should be required to ensure the

success of the operation. When QoS constraints are concerned, some terminals may have a
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higher priority when receiving radio resources for their transmission/reception. For example,

the prioritization can be given for example to terminals due to the use of multimedia services

that do not tolerate outage or interruption, or given to users that pay high subscription prices to

use mobile services (Chen et al., 2012). As the number of provided services and/or subscription

classes increases, the efficient use of radio resource becomes more challeging and intelligent

RRA solution are even more relevant.

Therefore, RRA plays a significant role in mobile networks since it defines mecha-

nisms and procedures to share radio resource such as power, bandwidth, handover criteria, time

slots, among others, in order to employ them as efficiently as possible.

1.2.3 Cooperative Networks

One of the biggest challenges of mobile networks is how to provide robust commu-

nication over fading channel. An interesting way to achieve this and, therefore, to mitigate the

effects of fading is the use of diversity. In this context, cooperative networks can be an efficient

an efficient solution since its main idea is to create multiple independent fading communication

paths between the source and the destination. In this manner, relay-based cooperation can

achieve diversity gains and, consequently, coverage, spectral efficiency and EE can be improved

as well (Ng; Yu, 2007).

The simplest cooperative network occurs when there is a base station (BS), a ter-

minal, and a device called relay that is capable of forwarding information from the BS to the

terminal through an alternative channel. In this way, cooperative networks guarantee at least two

independent and hopefully ucorrelated paths from the BS to the terminal that will receive two

copies of the same signal. Using different paths for communication between BS and terminal is a

powerful technique to mitigate fading and improve robustness to interference (Zhao et al., 2006).

Thereby, cooperative networks exploit the diversity inherent in multiple spatially distributed

wireless links so that the diversity gains obtained are as high as the number of relays employed in

the system. This type of diversity is known as cooperative diversity and, roughly speaking, occurs

when several nodes, each with one or more antennas, form a kind of “coalition” to cooperatively

act as a large transmit or receive array similarly to MIMO systems (Host-Madsen; Zhang, 2005).

Diferent benefits can be achieved through the efficient management of the relays due

to the assumption of independence among the different paths. These benefits include improved

reliability in data rate transmission, increased coverage area and also power savings. However,
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the increasing number of relays comes at the cost of RRA solutions with a higher computational

complexity and a significant burden in control signalling (Li et al., 2011).

Relays can resort to different techniques when forwarding information signals from

source node to the destinations. The two protocols most commonly used in cooperative com-

munication are the amplify and forward (AF), which amplifies the received signal first, then

broadcast it to the terminal, and the decode and forward (DF), which decodes the received

signal to remove the noise before transmitting a clean copy of the original signal to the terminal.

Thus, DF protocol requires more processing capacity since the signals have to be decoded at the

relays and then forwarded. Nevertheless, unlike AF, the DF protocol does not propagate channel

distortion and noise when the signal is correctly decoded at the relays (Host-Madsen; Zhang,

2005).

1.2.4 Massive MIMO systems

Increasing the capacity and reliability of wireless communication systems through

the use of multiple antennas has been an unceasing area of research during the last two decades.

Indeed, it has been shown in the literature that employing multiple antennas in both transmitter

and receiver has potential to remarkably improve performance in terms of spectral efficiency,

reliability and also EE. This type of technology emerged in the late 1990s and seminal works

in this area focused primarily on point-to-point MIMO which represents the simplest form of

MIMO systems. In this MIMO configuration, two devices with multiple antennas communicate

with each other, e.g., a BS equipped with an antenna array serves a terminal also equipped with

an antenna array. However, the actual implementation of multiple antennas in mobile terminals

faces many drawbacks. Among the main issues we can mention the limited physical size and

low-cost requirement for these terminals (Lu et al., 2014; Marzetta; Yang, 2016).

As a result, in recent years the researchers have shifted the focus to multiuser MIMO

(MU-MIMO) systems where several single antenna terminals are simultaneously served by a

multiple-antenna BS. In other words, the MU-MIMO system is obtained from single antenna

terminals by assuming that they compose a single virtual multiple-antenna terminal where

the same multiplexing gains can be obtained (Lu et al., 2014). Note that this is an important

advantage of MU-MIMO over point-to-point MIMO configuration since high processing capacity

requirement is kept on the BS side and, therefore, the terminals can be maintained relatively

cheap in the single-antenna configuration. Furthermore, the performance of MU-MIMO is much
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less sensitive to spatial correlation since in MU-MIMO different paths are in general independent

among themselves, the so called multi-user diversity. Nevertheless, similar to point-to-point

MIMO, MU-MIMO is not a scalable technology and the corresponding improvements owing to

the employment of a high number of antennas are still modest. Fundamentally, this is because

both point-to-point MIMO and MU-MIMO require the acquisition of channel state information

(CSI) which can be obtained by means of pilot overhead (Marzetta; Yang, 2016).

Therefore, with the purpose of showing the true potential of MIMO systems, the

massive MIMO concept was proposed by Marzetta in (Marzetta, 2010). Basically, the idea

in that work was to propose an MU-MIMO where the number of antennas at BS is much

larger than the number of served terminals. Thereby, it was shown that as the number of

antennas at the transmitter grows without limit, all effects of uncorrelated noise and fast fading

disappear and it makes simple linear processing nearly optimal. Furthermore, in massive MIMO

only the BS obtains CSI and to acquire it, depending on the operating mode, the amount of

resources required does not depend on the number of antennas at BS. All this stands out from

traditional MU-MIMO and makes massive MIMO entirely scalable with respect to the number of

antennas at BS (Marzetta; Yang, 2016). In summary, massive MIMO is an interesting and useful

particular case of MU-MIMO and the main advantages of it includes huge spectral efficiency, high

communication reliability, high energy efficiency and simple signal processing (Marzetta; Yang,

2016; Ngo, 2015). However, due to limited number of orthogonal pilots, the reuse of them in

multicellular networks may be necessary causing a type of interference that significantly damages

the system performance. This phenomenon is known as pilot contamination which, unlike other

sources of interferences, does not vanish with unlimited number of antennas (Marzetta, 2010).

1.2.5 EH Communications

Traditionally, QoS constraints and spectral efficiency have been the predominant

focus for the mobile network design (Ahmed et al., 2015). However, as mobile networks are

also commonly powered using batteries, energy can become a severe bottleneck and, thereby,

prolonging the lifetime of a wireless network through EH communications has received signifi-

cant attention recently (Nasir et al., 2013). Besides, energy consumption has been a constant

concern of modern mobile networks and employing EH communications in this sense can be

quite promising for the future of wireless networks. EH comnunications can be defined as any

system which draws part or all of its energy from the environment, i.e., nature or man-made
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phenomena (Ulukus et al., 2015). Various types of energy sources can be utilized to supplement

energy supplies such as solar, wind, vibration, thermal, chemical, biological, indoor lighting,

electromagnetic wave, among others. In addition, energy may also be harvested from man-made

sources via wireless energy transfer, where energy is transferred from one node to another in a

controlled manner (Ku et al., 2015).

Employing EH communications in wireless systems can bring many promising ad-

vantages, including nearly permanent network lifetime and untethered mobility by breaking away

from conventional battery recharging. Moreover, EH communications can lead to mainly reduc-

tion of carbon footprint and self-sustainability which is a crucial step in building next generation

green and self-sufficient communication systems (Tutuncuoglu; Yener, 2012). Consequently,

EH communications lead to a new paradigm shift of energy supply by decreasing the use of

fossil fuels since its main idea is to generate energy from the sources which do not cause CO2

emissions.

EH models play vital roles in designing energy scheduling and evaluating the per-

formance of EH communications. Based on the availability knowledge about energy arrivals

at the transmitters, the EH communications scenarios can be grouped into two types: offline

and online optimization frameworks. In the offline optimization framework, it is assumed that

the transmitter has non-causal information on the exact energy and data arrival instants and

amount. Moreover, in this case, at the beginning of transmission, it is also considered full

knowledge of CSI. On the other hand, in the online optimization framework, the transmitter is

assumed to know the statistics of the underlying harvested energy and data arrival processes

and has causal information about their realizations as well as CSI (Blasco et al., 2013). As

a result, EH models can bring new dimensions to the wireless network problem in the form

of intermittency and randomness of harvested energy and, consequently, its optimization may

require more effort for designing efficient RRA algorithms (Ulukus et al., 2015). Furthermore,

the harvested energy may also be scarce, requiring tailored transmission policies to achieve

the desired performance (Tutuncuoglu; Yener, 2012). Thus, in order to ensure stringent QoS

constraints and to compensate for the randomness of harvested energy, it is common for wireless

networks to employ hybrid systems where the energy is supplied by both an energy harvester

and a constant energy source, e.g., electrical grid.
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1.3 State of the Art

The continuous evolution of wireless and mobile technologies depends fundamen-

tally on efficient RRA strategies/schemes that are usually solutions of optimization problems

composed of objective functions and constraint functions defined in a feasible domain. Due

to its relevance, RRA has been extensively investigated in the literature. Thus, in this section,

we highlight some works from the literature on RRA that have some similarity to the work

developed in this thesis. Firstly, we review several works in the context of EE and fairness by

considering different types of scenarios. Thus, this first of the literature review is related to the

problems of Chapter 2 where we basically investigate EE and fairness in cooperative networks.

Next, we cover works in the context of MIMO systems and EH communications which is related

to the problem of Chapter 3.

Literature review related to Chapter 2

Depending on the purpose and characteristics of the mobile system, there are many

different ways to measure EE (Chen et al., 2010). Most commonly, EE can be defined as the

ratio between the effectively transmitted data rate and the total expended power during the

transmission process, including instantaneous and static components (Souza et al., 2016). This

type of EE metric that tries to find a balance between data rate and consumed power is common

in the literature and can be found in many recent works such as (Masoudi et al., 2018; D’Oro

et al., 2018; Yu et al., 2016; Singh et al., 2017; Wang et al., 2018; Saraiva et al., 2018). The

maximization of the total system EE was considered in (Masoudi et al., 2018) and (D’Oro et

al., 2018), while (Masoudi et al., 2018) additionally assures QoS constraints to the terminals.

A joint optimization problem of link-layer EE and effective capacity in a Nakagami-m fading

channel under a delay-outage probability constraint and an average transmit power constraint

was investigated in (Yu et al., 2016). However, (Masoudi et al., 2018), (D’Oro et al., 2018)

and (Yu et al., 2016) did not consider a cooperative network. A utility-based joint subcarrier

and power allocation algorithm for improving the EE in multi-destination two-way regenerative

relay networks was investigated in (Singh et al., 2017). The EE maximization for an OFDMA

downlink network aided by a relay station with subcarrier pairing was studied in (Wang et al.,

2018). Although (Singh et al., 2017) and (Wang et al., 2018) considered cooperative networks,

the problem complexity was reduced by assuming only one relay station. An RRA problem with
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cooperative networks with multiple relays was addressed in (Saraiva et al., 2018). Nevertheless,

in (Saraiva et al., 2018) the authors focused only on maximizing the total system EE while

satisfying the minimum required data rate of all users. Therefore, similar to (Masoudi et al.,

2018; D’Oro et al., 2018; Yu et al., 2016; Wang et al., 2018; Singh et al., 2017), in (Saraiva et

al., 2018) other problem objectives, such as fairness in resource allocation, were not considered.

The provision of fairness in RRA has been considered in some works in the literature

(Li et al., 2015; Nguyen et al., 2015; Sokun et al., 2018; Singh; Chaturvedi, 2017; Song et al.,

2016; Sheng et al., 2015). Max-min fairness guarantees in non-cooperative networks has been

studied in (Li et al., 2015; Nguyen et al., 2015; Sokun et al., 2018). Specifically, in (Li et al.,

2015) a max-min EE-optimal problem to ensure fairness among links in OFDMA systems was

solved. In detail, the EE of the worst-case link subject to the rate requirements, transmit power,

and subcarrier assignment constraints is maximized. The fairness in terms of achievable EE in a

multicell multiuser multiple input single output (MISO) downlink system with a beamforming

scheme to maximize the minimum EE among all BSs is investigated in (Nguyen et al., 2015).

The problem of optimizing resource allocation in uplink OFDMA networks for providing EE

fairness among the users while considering discrete transmit power levels was addressed in

(Sokun et al., 2018). Particularly, the paper focused on how to maximize the minimum user

EE in the network by jointly optimizing resource blocks and discrete power allocation, without

considering QoS requirements.

In (Singh; Chaturvedi, 2017; Song et al., 2016; Sheng et al., 2015) fairness was

studied in cooperative networks with multiple relays. In (Singh; Chaturvedi, 2017) the authors

investigated a multi-user MIMO relay system, where several transmit nodes simultaneously

communicate with their respective receive nodes through half duplex MIMO AF relay nodes.

The problem was formulated as the maximization of the minimum SINR per stream among all

the users subject to transmit power constraints at the transmitter and relay nodes. The trade-off

among spectral efficiency, EE, and fairness in terms of data rate in cooperative OFDMA systems

with DF relaying was studied in (Song et al., 2016), where subcarrier pairing and assignment,

relay selection, transmission strategy selection, and power allocation were jointly considered.

The fairness in terms of data rate was represented using the ³−fairness model and the resource

allocation problem was formulated as a multi-objective optimization problem. Therefore, unlike

(Singh; Chaturvedi, 2017) and (Song et al., 2016) we consider fairness in terms of EE. Lastly, an

adaptive relay selection rule that can serve as an effective tool to achieve a desirable trade-off
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between fairness and energy consumption was introduced in (Sheng et al., 2015). Moreover, it

was also proposed a power-allocation method to optimize the DF cooperative transmission for

source and relay nodes as a means to reduce the total power consumption, while maintaining the

required QoS. However, the considered EE metric consists only in the power consumption of

network nodes and, therefore, it was not able to optimize the trade-off between transmit data rate

and power consumption.

Literature review related to Chapter 3

Both massive MIMO and EH are well studied technologies that have been constantly

investigated in the literature. In massive MIMO systems, several problems with different aims

have been proposed such as max-min fairness, and the maximization of spectral efficiency and

energy efficiency in an individual fashion or jointly in (Ngo et al., 2017; Arash et al., 2017;

Hamdi; Ajib, 2015; Liu et al., 2017; Hu et al., 2014). Nevertheless, none of these articles

considered the employment of EH communications. On the other hand, EH for single-antenna

transceivers has been addressed in (Carvalho et al., 2018; Ming et al., 2015; Jiang et al., 2015;

Song; Xu, 2018). In (Carvalho et al., 2018) an RRA problem was investigated where the aim is

to maximize throughput in an OFDMA system considering also QoS constraints. In that work,

the authors considered the case where the energy source is obtained solely from solar energy

from photovoltaic panels and a hybrid case where energy comes from photovoltaic panels and

from the grid. Differently of (Carvalho et al., 2018), in (Ming et al., 2015; Jiang et al., 2015;

Song; Xu, 2018) EH scenarios were addressed in cooperative networks. The purpose in (Ming

et al., 2015) was to propose a resource allocation scheme to maximize the energy efficiency

of the system, where the relay was powered only by the harvested energy. On the other hand,

the main objective in the articles (Jiang et al., 2015) and (Song; Xu, 2018) was to investigate

joint relay selection and power allocation schemes in order to maximize the system throughput

assuming half-duplex and full-duplex relays, respectively. However, similar to (Ming et al.,

2015), (Jiang et al., 2015) and (Song; Xu, 2018), the authors did not consider the hybrid case

since the relay stations were powered only by EH sources. Although EH sources have many

advantages, they present a stochastic nature and this might jeopardize service guarantees to users

in more realistic scenarios. Therefore, a hybrid system design, which uses grid energy in a

complementary manner, is preferable in practice for providing uninterrupted service.

Massive MIMO systems combined with EH technology can be found in (Hamdi et
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al., 2017; Zhang et al., 2018; Kuang et al., 2017; Zhao; Zheng, 2016). In (Hamdi et al., 2017)

the authors investigated the energy consumption of distributed massive MIMO systems using

hybrid energy. More specifically, a minimization problem of grid power consumption subject to

QoS constraint per user was formulated, the optimal solution was found and a heuristic algorithm

was provided. Both offline and online scenarios were considered in that paper. Similar to (Hamdi

et al., 2017), in (Zhang et al., 2018) the authors also considered online and offline scenarios with

hybrid EH BS, but the goal was the system throughput maximization without considering QoS

constraints. However, neither (Hamdi et al., 2017) nor (Zhang et al., 2018) addressed fairness

in their problem formulations. Motivated by this, fairness was taken into account in the studies

presented in (Kuang et al., 2017) and (Zhao; Zheng, 2016). Nevertheless, these articles did not

consider QoS and focus on EH models based on wireless energy transfer technology, where

utility functions were employed in order to achieve improved efficiency/fairness.

1.4 Thesis Organization and Contributions

In this section we present the organization of this master’s thesis by describing each

chapter in details in order to show our main contributions.

In Chapter 2, we investigate a cooperative network with multiple relays and multiple

destination nodes. Basically, we investigate some relevant RRA problems in the form of non-

convex optimization problems each one being composed of four subproblems: subcarrier pairing,

relay selection, subcarrier assignment and transmit power allocation. Our goal is to study the

impact of QoS on important problems within the EE and fairness context. The studied problems

are total power minimization, total EE maximization and minimum individual EE maximization.

The latter is able to ensure fairness in the resource allocation in terms of EE. All these problems

are subject to QoS constraints and individual power constraints in each network node. Although

some of these problems are fractional and non-linear, optimal solutions are provided by using

iterative algorithms based on the theory of fractional programming and generalized fractional

programming. Furthermore, we present and demonstrate an interesting property that exploits

the employment of the DF protocol present in the relays and we show how it can be applied

in the three problems addressed herein to simplify them. Thereby, we are able to considerably

reduce the number of variables and constraints of these problems and, therefore, reducing their

computational complexity. In addition, we assume that the mapping between signal-to-noise

ratio (SNR) and transmit data rate is discrete so as to better model practical networks. This
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assumption leads to important changes in both performance and problem solving and is rarely

employed in the literature since taking this into account can make the optimization problems

even harder. It is important to note that working in a cooperative network with multiple relays

considering subcarrier pairing and assignment, relay selection and transmitted power allocation

is rarely found in the literature. In addition, in this scenario we investigate three important

problems in the context of EE and EE fairness and this is not considered in any work reviewed in

Section 1.3.

In Chapter 3, we formulate an RRA problem in the context of massive MIMO

communications with EH-capable nodes, in which the circuit energy consumption, the limited

battery storage capacity, and minimum SINR requirements are taken into consideration. The

considered system is composed of a large set of single-antenna H-APs that are uniformly

distributed in the coverage area and each of them is powered by an independent EH source and

the electrical grid, i.e., the grid energy is assumed as a complementary energy supplement to

the system. The H-APs are responsible for transmitting data information to a number of users

over the same time/frequency resources with the aim of providing fairness and satisfying their

QoS demands. To be specific, our RRA problem is formulated as an optimization problem for

optimizing the transmit power in order to provide max-min fairness in terms of SINR considering

also QoS constraints in offline scenarios. The study of offline scenarios is considered important in

the literature since it provides a bound on the performance of the corresponding online problem.

To solve the formulated max-min fairness problem we employ concepts of generalized fractional

programming and as well as an alternative approach to optimally solve the problem. Furthermore,

motivated by environmental issues, we limit the grid energy consumption relative to the havested

energy and discuss the effects of that consideration. In the results, we show the performance

of both optimal solutions on the fairness-oriented resource allocation and we highlight some

important trade-offs in the context of our problem. As discussed, massive MIMO and EH are

widely studied subjects in the literature but few works exploit them together. Thus, we investigate

a fairness problem that in the scenario considered in this thesis is not found in any work discussed

in the state of the art of Section 1.3.

In Chapter 4, we conclude this thesis by summarizing and highlighting the main

points of this thesis and we also point out the main research directions that can be considered as

extension and future works.
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1.5 Scientific Production

Part of the content and contributions of chapter 2 of this master’s thesis were pu-

blished with the following information:

• Juno V. Saraiva, Jair A. de Carvalho, F. Rafael M. Lima, Tarcisio F. Maciel and F. Rodrigo

P. Cavalcanti, “Alocação de Recursos em Sistemas Cooperativos para Maximização da

Eficiência Energética Sujeita a Restrições de QoS”. In: PROCEEDINGS of the Brazilian

Telecommunications Symposium (SBrT). São Pedro, Brazil, 2017.

• Juno V. Saraiva, F. Rafael M. Lima, Tarcisio F. Maciel and F. Rodrigo P. Cavalcanti,

“Relay Selection, Subcarrier Pairing and Power Allocation for Energy Efficiency and QoS

Guarantees”. In: PROCEEDINGS of the IEEE Wireless Communications and Networking

Conference (WCNC). Barcelona, Spain, 2018.

Other works regarding chapters 2 and 3 are to be submitted.

• Juno V. Saraiva, F. Rafael M. Lima, Alexandre M. Pessoa, Tarcisio F. Maciel and F.

Rodrigo P. Cavalcanti, “QoS-Constrained Radio Resource Allocation for Energy Efficiency

Optimization in Cooperative Networks.” [to be submitted to a journal].

• Juno V. Saraiva, F. Rafael M. Lima, Tarcisio F. Maciel and F. Rodrigo P. Cavalcanti,

“Max-Min Fairness in an Energy-Harvesting-Aided and QoS-Constrained Massive MIMO

System.” [to be submitted to a journal].

Another research work that was performed during the master course and is not

present in this thesis was published with the following information:

• Jair A. de Carvalho, Juno V. Saraiva, F. Rafael M. Lima, Tarcisio F. Maciel and F.

Rodrigo P. Cavalcanti, “Resource Allocation for OFDMA Systems and Energy Harvesting

Communications in Multi-User Offline Scenarios”. In: PROCEEDINGS of the Brazilian

Telecommunications Symposium (SBrT). São Pedro, Brazil, 2017.

In parallel to the work developed in the master course that was initiated on the second

semester of 2017, we have been working on other research projects related to machine learning

for intelligent control of 5G networks. In the context of these projects, we have participated on

the following works:

• Juno V. Saraiva, Victor F. Monteiro, F. Rafael M. Lima, Tarcisio. F. Maciel and F. Rodrigo

P. Cavalcanti, “A Q-learning Based Approach to Spectral Efficiency Maximization in

Multiservice Wireless Systems”. In: PROCEEDINGS of the Brazilian Telecommunications

Symposium (SBrT). Petrópolis, Brazil, 2019 [submitted].
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• Juno V. Saraiva, Victor F. Monteiro, Diego A. Sousa, Weskley V. F. Maurício, F. Rafael M.

Lima, Tarcisio F. Maciel and F. Rodrigo P. Cavalcanti, “Radio Resource Allocation and

QoS Management in Multi-User, Multi-Service and Multi-RAT 5G Systems”. GTEL-UFC-

Ericsson UFC.47, Tech. Rep., April 2019, First Technical Report.
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2 RADIO RESOURCE ALLOCATION FOR ENERGY EFFICIENCY OPTIMIZA-

TION IN COOPERATIVE NETWORKS

2.1 Introduction

In this chapter, we investigate three RRA problems in the form of optimization

problems involving cooperative networks with multiple relays and destination nodes. The studied

problems include the total power minimization, total EE maximization and minimum individual

EE maximization subject to QoS constraints and individual power constraints in each node of

the network. This chapter is organized as follows. In Section 2.2 we present the assumed system

modeling and scenario and define the main variables related to the three RRA problems. The

mathematical formulations of these problems are shown in Section 2.3. In Sections 2.4 and 2.5

we present a simplification of the problems and their optimal solutions, respectively. Simulation

results and discussions are provided in Section 2.6 and, finally, concluding remarks are given in

Section 2.7.

2.2 Channel and System Modeling

We consider a communication system using OFDMA and having a transmitting

source (BS, in our model), K relay nodes, and J destination nodes. Due to severe path loss and

shadowing, we assume that the source and destination nodes are unable to communicate directly

and, therefore, the relays are responsible for information forwarding. There are N orthogonal

OFDMA subcarriers that can be commonly used in the source-relay hop (hop 1) and the relay-

destination hop (hop 2). The relays operate in the half-duplex mode and the transmission of

information occurs in two time slots, where in the first time slot, the source transmits information

to the relays, and in the second one, the relays forward the information to the destination nodes.

We assumeN = {1, . . . , N} as the set of all subcarriers, K = {1, . . . , K} as the set of all relays,

and J = {1, . . . , J} as the set of all destination nodes. Information processing at the relay is

done by the DF protocol. Thus, the relays first receive the information signal, perform detection

and decoding, and finally re-encode information for transmission.

We assume as subcarrier pairing the process of defining for each subcarrier of hop

1, the corresponding subcarrier of hop 2 that will forward the information sent from the source.

Subcarrier assignment consists in assigning a subcarrier q from hop 2 to a destination node j. In

order to avoid possible interference between relays, each subcarrier of hops 1 and 2 can only be



33

Figura 2 – Communication system with a transmitter source, K relays and J destination nodes.
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associated with a single relay during the half duplex transmission. Each relay, on the other hand,

can make several simultaneous subcarrier pairings. The process of defining which relay will

perform the pairing of two paired subcarriers is called relay selection. It is important to highlight

that relay selection and subcarrier assignment problems are only present when multiple relays

and multiple destination nodes are assumed, respectively. Few works presented in the literature

review in Section 1.3 assumed multiple relays in the cooperative system.

The SNR µs
n,k of subcarrier n in hop 1 when associated with relay k, and the SNR

µr
q,k,j of subcarrier q of hop 2 when associated with relay k and assigned to destination node j,

are given respectively by

µs
n,k =

ps
n · ³s

k · |hs
n,k|2

Ã2
, and µr

q,k,j =
pr
q · ³r

k,j · |hr
q,k,j|2

Ã2
, (2.1)

where |hs
n,k| and |hr

q,k,j| represent the magnitude of the complex frequency response of subcarrier

n of hop 1 when associated with relay k, and subcarrier q of hop 2 when associated with relay

k and assigned to destination node j, respectively. ps
n is the power allocated by the source to

subcarrier n of hop 1 and pr
q is the power allocated by relay k to subcarrier q of hop 2. Ã2 is the

average power of the thermal noise and, finally, ³s
k and ³r

k,j model the effect of long-term path
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loss and shadowing of the links between source node and relay k in hop 1, and between relay k

and destination node j in hop 2, respectively. We assume that P s
total is the total power available at

source and that P k
total is the total power available at relay k.

Tabela 1 – Mapping from SNR to transmit data rate per subcarrier.

Range of SNR Transmit data rate

γ1 f (γs
n,k or γr

q,k,j) < γ2 r1
γ2 f (γs

n,k or γr
q,k,j) < γ3 r2

...
...

γM−1 f (γs
n,k or γr

q,k,j) < γM rM−1

(γs
n,k or γr

q,k,j) g γM rM

Let φ(·) be the link adaptation function responsible for mapping the SNR to the

transmit data rate on each subcarrier. This is a discrete and monotonic increasing function that

models the modulation and coding scheme (MCS) levels in a practical wireless network. Thus,

the data rate transmitted in a subcarrier n of hop 1 associated with relay k and in a subcarrier q

of hop 2 associated with relay k and assigned to destination node j are given by φ
(

µs
n,k

)

and

φ
(

µr
q,k,j

)

, respectively.

We assume in this study M possible levels of MCS contained in the set M =

{1, . . . ,M}. We define as rm the data rate when the m-th MCS level is used in a given

subcarrier1. In order to have a transmission in the m-th MCS level with an acceptable bit

error rate, it is required that the SNR of the subcarrier be equal to µm where µm+1 > µm as

shown in Table 1. Thus, we define ps
n,m,k as the transmit power needed by subcarrier n of hop 1

associated with relay k in order to transmit at the m-th MCS level. Similarly, we define pr
q,m,k,j

as the transmit power needed by subcarrier q of hop 2, associated with relay k and assigned

to destination node j in order to transmit at the m-th MCS level. ps
n,m,k and pr

q,m,k,j can be

calculated from (2.1) and φ(·).
The main aspects of our system modeling are illustrated in Figure 2. In relay 2, for

example, the subcarriers 2 and 3 of hop 1 and hop 2, respectively, were paired, and destination

node 2 is assigned. Furthermore, the 7-th and 8-th MCS levels were set to subcarriers 2 and 3,

respectively. The same reasoning applies to any other relay present in Figure 2.

We define the optimization binary variables as ys
n,m,k and yr

n,q,m,k,j , where ys
n,m,k

assumes the value 1 when the source transmits at the m-th MCS level on subcarrier n of hop 1

1 We consider that in the first MCS level (m = 1) we have r1 = 0.
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to the k-th relay, and 0 otherwise, and yr
n,q,m,k,j assumes 1 when the k-th relay transmits at the

m-th MCS level on subcarrier q of hop 2 that is paired with subcarrier n of hop 1 and assigned to

destination node j, and 0 otherwise. Note that when ys
n,m,k = 1, the power allocated to subcarrier

n is ps
n,m,k, whereas the transmit power in subcarrier q is pr

q,m,k,j when yr
n,q,m,k,j = 1.

We define rs
n as the transmit data rate in the n-th subcarrier of hop 1 and rr

n,q as the

transmit data rate in the q-th subcarrier of hop 2 that is paired with the n-th subcarrier of hop 1.

We define link as the set of two paired subcarriers. Thus, the end-to-end data rate on the n-th

link is given by min
{

rs
n, r

r
n,q

}

due to the use of the DF protocol (Saraiva et al., 2018; Silva et

al., 2012). Table. 2 summarizes the main variables defined in this section 2.

Tabela 2 – Summary of the main variables of chapter 2.

Variable Description

N Number of OFDMA subcarriers at each hop.
M Number of MCS levels.
K Number of relays.
J Number of destination nodes.
N Set of all subcarriers.
M Set of all levels of MCS.
K Set of all relays.
J Set of all destination nodes.

ys
n,m,k Optimization binary variable of hop 1. ys

n,m,k assumes 1 when the source transmits at
the m-th MCS level on subcarrier n of hop 1 to the k-th relay, and 0 otherwise.

yr
n,q,m,k,j Optimization binary variable of hop 2. yr

n,q,m,k,j assumes 1 when the k-th relay
transmits at the m-th MCS level on subcarrier q of hop 2 that is paired with subcarrier
n of hop 1 and assigned to destination node j, and 0 otherwise.

rm Data rate when the m-th MCS level is used in a given subcarrier.
rs
n Transmit data rate in the n-th subcarrier of hop 1.

rr
n,q Transmit data rate in the q-th subcarrier of hop 2 that is paired with the n-th subcarrier

of hop 1.
P s

total Total power available at source.
P k

total Total power available at relay k.
ps
n,m,k Power allocated to subcarrier n of hop 1 when ys

n,m,k = 1.
pr
q,m,k,j Power allocated to subcarrier q of hop 2 when yr

n,q,m,k,j = 1.

2.3 Problem Formulations

In this section, we present the mathematical formulation of total power minimization,

total EE maximization and minimum individual EE maximization problems. We begin by stating

the main system constraints that are common to the three problems. Firstly, each subcarrier n

of hop 1 only transmits in a single MCS level and can only be associated with a single relay

2 The variables defined in the Table 2 are valid only in this chapter.
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according to (2.2a). In addition, each subcarrier q of hop 2 should transmit in a unique MCS

level, be associated with a single relay node, be paired with a single subcarrier in hop 1 and,

finally, be assigned to a single destination node. Similarly, each subcarrier n of hop 1 should

be paired with a unique subcarrier in hop 2 that is assigned to a single relay transmitting in a

given MCS level and associated with a single destination node. Both constraints are assured by

equations (2.2b) and (2.2c). According to (2.2d), the pairing of two specific subcarriers of hops

1 and 2 should be performed by a single relay.

∑

m∈M

∑

k∈K

ys
n,m,k = 1, ∀n ∈ N , (2.2a)

∑

n∈N

∑

m∈M

∑

k∈K

∑

j∈J

yr
n,q,m,k,j = 1, ∀q ∈ N , (2.2b)

∑

q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yr
n,q,m,k,j = 1, ∀n ∈ N , (2.2c)

∑

m∈M

ys
n,m,k −

∑

q∈N

∑

m∈M

∑

j∈J

yr
n,q,m,k,j = 0, ∀n ∈ N , ∀k ∈ K (2.2d)

Constraints (2.3a) and (2.3b) guarantee that the total transmit power at source and

each relay k should not be higher than the available power at source, P s, and at each relay k, P k,

respectively. The total used power in the whole system is represented by (2.4). It is common in

the literature to consider a single power constraint for all relays or for the entire system (see, e.g.,

(Song et al., 2016)). While this is in practice unrealistic, it is used to simplify the structure of

problems.

∑

n∈N

∑

m∈M

∑

k∈K

ys
n,m,k · ps

n,m,k f P s, (2.3a)

∑

n,q∈N

∑

m∈M

∑

j∈J

yr
n,q,m,k,j · pr

q,m,k,j f P k, ∀k ∈ K, (2.3b)

P =
∑

n∈N

∑

m∈M

∑

k∈K

ys
n,m,k · ps

n,m,k +
∑

n,q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yr
n,q,m,k,j · pr

q,m,k,j + pc. (2.4)

The total power used in the system includes not only the transmit power of all nodes,

but also the circuit power in the source, relays and destination nodes. Without loss of generality,

we assume that the total power consumed in the circuits of all these nodes is pc. We can assume

that the value of pc is constant independently of the problem variables (Masoudi et al., 2018;
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D’Oro et al., 2018; Yu et al., 2016; Wang et al., 2018; Singh et al., 2017; Saraiva et al., 2018; Li

et al., 2015; Nguyen et al., 2015; Sokun et al., 2018; Song et al., 2016).

The variables rs
n, and rr

n,q are defined as

rs
n =

∑

m∈M

∑

k∈K

ys
n,m,k · rm ∀n ∈ N ,

rr
n,q =

∑

q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yr
n,q,m,k,j · rm ∀n ∈ N .

(2.5)

We present in (2.6) the total data rate, R, which effectively reaches the destination

nodes through the N links due to DF forwarding mechanism.

R = max
∑

n∈N

min
{

rs
n, r

r
n,q

}

. (2.6)

Note that R can be rewritten as max
∑

n∈N

∑

m∈M

∑

j∈J

xn,m,j · rm, provided that:

∑

m∈M

∑

j∈J

xn,m,j · rm f rs
n, ∀n ∈ N , (2.7a)

∑

m∈M

∑

j∈J

xn,m,j · rm f rr
n,q, ∀n ∈ N , (2.7b)

∑

m∈M

∑

j∈J

xn,m,j = 1, ∀n ∈ N , (2.7c)

where xn,m,j is an auxiliary binary variable used to linearize (2.6). Using xn,m,j we can also

easily obtain the data rate of each destination node j, Rj , as shown below:

Rj =
∑

n∈N

∑

m∈M

xn,m,j · rm, ∀j ∈ J . (2.8)

The first problem formulated consists of total transmit power minimization (TPM)

problem whose objective function is the minimization of (2.4) subject to QoS constraints.

Therefore, the TPM problem can be formulated as

min
ys
n,m,k

, yr
n,q,m,k,j

xn,m,j

P, (2.9a)

s.t. Rj g Àj, ∀j ∈ J , (2.9b)

(2.2), (2.3) and (2.7),
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where constraint (2.9b) consists of the QoS requirements of each destination node j in terms of

its required data rate, Àj , i.e., (2.9b) keeps the data rates of all destination nodes of the system

greater than or equal to their requirements.

According to the presented definition of EE, the QoS-constrained total EE (QEE)

maximization problem can be formulated as

max
ys
n,m,k

, yr
n,q,m,k,j

xn,m,j

R

P
, (2.10a)

s.t. (2.2), (2.3), (2.7), and (2.9b).

To formulate the problem of minimum individual EE maximization we need to obtain

the power consumed by each destination node, Pj . For this, it is necessary to define a new binary

variable wn,m,k,j subject to the constraints:
∑

m∈M

∑

k∈K

∑

j∈J

wn,m,k,j · rm =
∑

m∈M

∑

k∈K

ys
n,m,k · rm, ∀n ∈ N , (2.11a)

∑

m∈M

wn,m,k,j =
∑

q∈N

∑

m∈M

yr
n,q,m,k,j, ∀n ∈ N , ∀k ∈ K, ∀j ∈ J , (2.11b)

∑

m∈M

∑

k∈K

∑

j∈J

wn,m,k,j = 1, ∀n ∈ N . (2.11c)

In this way, the idea is basically that wn,m,k,j obtains n, k and j from yr
n,q,m,k,j and m from ys

n,m,k.

Thus, Pj is given as

Pj =
∑

n∈N

∑

m∈M

∑

k∈K

wn,m,k,j · ps
n,m,k +

∑

n,q∈N

∑

m∈M

∑

k∈K

yr
n,q,m,k,j · pr

q,m,k,j + pjc, ∀j ∈ J , (2.12)

where pjc is the circuit power of each destination node j, and the individual EE of destination

node j, EEj , is defined as

EEj =
Rj

Pj

, ∀j ∈ J . (2.13)

Therefore, the problem of maximizing the minimum QoS-constrained individual EE

(max-min QEE) to achieve fairness in resource allocation in terms of EE among all destination

nodes can be formulated as

max
ys
n,m,k

, yr
n,q,m,k,j

xn,m,j , wn,m,k,j

min

{

R1

P1

,
R2

P2

, . . . ,
Rj

Pj

, . . . ,
RJ

PJ

}

, (2.14)

s.t. (2.2), (2.3), (2.7), (2.9b) and (2.11).

Note that the objective of problem (2.14) garantees more fariness between destination

nodes in terms of EE by enhancing the worst individual EE.



39

2.4 Simplification of Problems

The worst-case computational complexities to obtain the optimal solution for pro-

blems (2.9), (2.10) and (2.14) are exponential which certainly requires high computational

performance. Fortunately, we can exploit a specific property of the DF relay mechanism to

simplify all these problems in order to reduce their complexities. Firstly, we demonstrate in

Proposition 1 an important property of the DF protocol applicable to problem (2.10). After that,

we show how this property can be used in problems (2.9) and (2.14).

Proposition 1. Let S be a set containing all possible optimal solutions of problem (2.10). Then

for every solution {ys
n,m,k, y

r
n,q,m,k,j} ∈ S we necessarily have rs

n = rr
n,q, ∀n ∈ N .

Demonstração. Suppose there is an optimal solution {ys⋆
n,m,k, y

r⋆
n,q,m,k,j} ∈ S such that rs⋆

n ̸= rr⋆
n,q

for some n ∈ N , where rs⋆
n is the transmit data rate in the n-th subcarrier of hop 1 associated to

that solution and rr⋆
n,q is the transmit data rate in the q-th subcarrier of hop 2 that is paired with

the n-th subcarrier of hop 1 associated to the same solution. We can represent the data rates

rs⋆
n and rr⋆

n,q using the link adaptation function φ(·) defined in Section 2.2. With this, we have:

rs⋆
n = φ(Äs⋆

n · gs⋆
n ), ∀n ∈ N ,

rr⋆
n,q = φ(Är⋆

n,q · gr⋆
n,q), ∀n ∈ N ,

(2.15)

where Äs⋆
n and gs⋆

n are the transmit power and the normalized gain of subcarrier n in hop 1

obtained from solution {ys⋆
n,m,k, y

r⋆
n,q,m,k,j} ∈ S , respectively3. Analogously, Är⋆

n,q and gr⋆
n,q are the

transmit power and normalized gain of subcarrier q of hop 2 paired with subcarrier n in hop 1 for

that particular solution, respectively. Äs⋆
n , Är⋆

n,q, gs⋆
n and gr⋆

n,q are shown in (2.16a), (2.16b), (2.16c),

and (2.16d), respectively.

Äs⋆
n =

∑

m∈M

∑

k∈K

ys⋆
n,m,k · ps

n,m,k, ∀n ∈ N , (2.16a)

Är⋆
n,q =

∑

q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yr⋆
n,q,m,k,j · pr

q,m,k,j, ∀n ∈ N , (2.16b)

gs⋆
n =

∑

m∈M

∑

k∈K

ys⋆
n,m,k · g̃s

n,k, ∀n ∈ N , (2.16c)

gr⋆
n,q =

∑

q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yr⋆
n,q,m,k,j · g̃r

q,k,j, ∀n ∈ N , (2.16d)

where g̃s
n,k =

³s
k
·|hs

n,k
|2

Ã2 and g̃r
q,k,j =

³r
k,j

·|hr
q,k,j

|2

Ã2 .
3 The normalized gain is the ratio of the channel gain and the average noise power of a subcarrier.
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Thus, if we have rs⋆
n ̸= rr⋆

n,q for some n ∈ N then we have two possibilities. Firstly,

if rs⋆
n > rr⋆

n,q −→ Äs⋆
n · gs⋆

n > Är⋆
n,q · gr⋆

n,q because φ(·) is monotonically increasing. With this,

we can observe that the end-to-end data rate in the link n is rr⋆
n,q

4. Thus, it is possible to save

power from link n by removing a quantity of power, ∆Äs⋆
n , from subcarrier n of hop 1 so that

there is no change in the end-to-end link data rate. Therefore, 0 f ∆Äs⋆
n f Äs⋆

n is such that

(Äs⋆
n −∆Äs⋆

n ) ·gs⋆
n = Är⋆

n,q ·gr⋆
n,q when rs⋆

n = rr⋆
n,q. According to this hypothesis, we can decrease the

used power in the system maintaining the same transmit data rate. In other words, as we assumed

that the EE is defined as the ratio between the transmit data rate and the total used power, a

reduction in the total used power while maintaining the same transmit data rate would lead to an

improvement in the system EE. However, this is a contradiction because {ys⋆
n,m,k, y

r⋆
n,q,m,k,j} was

a supposedly an optimal solution and its objective function, EE, could not be further increased.

The same reasoning applies in the second case when rs⋆
n < rr⋆

n,q. Therefore, if {ys⋆
n,m,k, y

r⋆
n,q,m,k,j}

is an optimal solution of problem (2.10), then we necessarily have rs⋆
n = rr⋆

n,q, ∀n ∈ N .

Note that an immediate consequence of Proposition 1 is that if {ys⋆
n,m,k, y

r⋆
n,q,m,k,j}

is an optimal solution of problem (2.9) where the objective is to minimize the total transmit

power, then we also necessarily have rs⋆
n = rr⋆

n,q, ∀n ∈ N . This is not the case for optimi-

zation objectives that involve the maximization of the spectral efficiency, e.g., total data rate

maximization.

Now, for problem (2.14), suppose there is an optimal solution, {ys’
n,m,k, y

r’
n,q,m,k,j},

where for some link there is an inequality in transmit data rates of paired subcarriers and let ε be

the largest value such that:

Rj({ys’
n,m,k, y

r’
n,q,m,k,j})

Pj({ys’
n,m,k, y

r’
n,q,m,k,j})

g ε, ∀j ∈ J . (2.17)

However, according to Proposition 1, from {ys’
n,m,k, y

r’
n,q,m,k,j} it is possible to find a solution,

{ys⋆
n,m,k, y

r⋆
n,q,m,k,j}, which decreases the used power in the system maintaining the same transmit

data rate in order to improve EE. Thus, according to Proposition 1 in {ys⋆
n,m,k, y

r⋆
n,q,m,k,j}, the

transmit data rates of any paired subcarriers is the same but total transmit power can be lower

than in solution {ys’
n,m,k, y

r’
n,q,m,k,j} so that:

Rj({ys⋆
n,m,k, y

r⋆
n,q,m,k,j})

Pj({ys⋆
n,m,k, y

r⋆
n,q,m,k,j})

g
Rj({ys’

n,m,k, y
r’
n,q,m,k,j})

Pj({ys’
n,m,k, y

r’
n,q,m,k,j})

g ε, ∀j ∈ J . (2.18)

4 This is a consequence of DF protocol that limits the data rate by the worst hop.
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Hence, if {ys’
n,m,k, y

r’
n,q,m,k,j} is the optimal solution of problem (2.14) then {ys⋆

n,m,k, y
r⋆
n,q,m,k,j} is

as well since the objective in that problem is to maximize the minimum EE among all destination

nodes. Differently from problems (2.9) and (2.10), the same transmit data rates in both hops of

two paired subcarriers are not necessarily required for the optimal solution of problem (2.14).

However, for each optimal solution with unbalanced data rates for two paired subcarriers, there

is exists an alternative optimal solution with balanced data rates for the same paired subcarriers.

Tabela 3 – Number of variables and constraints before and after applying Proposition 1.

Before applying Proposition 1

Problems Number of variables Number of constraints

(2.9) and (2.10) NM(K +NKJ + J) 6N +NK +K + J + 1
(2.14) NM(NKJ +KJ +K + J) 8N +NK(J + 1) +K + J + 1

After applying Proposition 1

Problems Number of variables Number of constraints

(2.20), (2.21) and (2.22) N2MKJ 2N +K + J + 1

The main consequence of Proposition 1 is that in the optimal solutions of problems

(2.9), (2.10) and (2.14) two paired subcarriers should transmit at the same MCS level. In this

way, we can define a single binary optimization variable yn,q,m,k,j that assumes 1 when the pair

of subcarriers (n, q) matched by the k-th relay transmits at the m-th MCS level and is assigned

to the j-th destination node, otherwise, we have yn,q,m,k,j = 0. Then, the link (n, q) can only

transmit in a single level of MCS and only be paired by a single relay and, in addition, any

subcarrier can only be paired with a single subcarrier. This allows us to rewrite the variables

R, Rj , P and Pj as shown in (2.19a), (2.19b), (2.19c) and (2.19d), respectively. In summary,

the main consequence of Proposition 1 is that we can rewrite problems (2.9), (2.10) and (2.14)

employing a lower-dimension optimization variable, yn,q,m,k,j , according to equations (2.20),

(2.21) and (2.22), respectively.
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R =
∑

n,q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yn,q,m,k,j · rm, (2.19a)

Rj =
∑

n,q∈N

∑

m∈M

∑

k∈K

yn,q,m,k,j · rm, ∀j ∈ J , (2.19b)

P =
∑

n,q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yn,q,m,k,j · (ps
n,m,k + pr

q,m,k,j) + pc, (2.19c)

Pj =
∑

n,q∈N

∑

m∈M

∑

k∈K

yn,q,m,k,j · (ps
n,m,k + pr

q,m,k,j) + pjc, ∀j ∈ J . (2.19d)

min
yn,q,m,k,j

P, (2.20a)

s.t.
∑

n,q∈N

∑

m∈M

∑

k∈K

yn,q,m,k,j · rm g Àj, ∀j ∈ J , (2.20b)

∑

n∈N

∑

m∈M

∑

k∈K

∑

j∈J

yn,q,m,k,j = 1, ∀q ∈ N , (2.20c)

∑

q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yn,q,m,k,j = 1, ∀n ∈ N , (2.20d)

∑

n,q∈N

∑

m∈M

∑

k∈K

∑

j∈J

yn,q,m,k,j · ps
n,m,k f P s

total, (2.20e)

∑

n,q∈N

∑

m∈M

∑

j∈J

yn,q,m,k,j · pr
q,m,k,j f P k

total, ∀k ∈ K, (2.20f)

max
yn,q,m,k,j

R

P
, (2.21a)

s.t. (2.20b), (2.20c), (2.20d), (2.20e) and (2.20f).

and problem (2.14) as:

max
yn,q,m,k,j

min

{

R1

P1

,
R2

P2

, . . . ,
Rj

Pj

, . . . ,
RJ

PJ

}

, (2.22a)

s.t. (2.20b), (2.20c), (2.20d), (2.20e) and (2.20f).

We show in Table 3 the number of binary optimization variables and constraints

for problems (2.9), (2.10), and (2.14) before and after applying Proposition 1, which leads to a

significant simplification of the problems formulated in Section 2.3.
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2.5 Optimal Solutions

In this section, we discuss the optimal solutions to the problems (2.20), (2.21) and

(2.22). Before this, firstly, note that linear constraints (2.20b), (2.20c), (2.20d), (2.20e) and

(2.20f) are common to all three problems and we can represent them in matrix form, respectively,

as follows:

[

11×N2 ¹
[

rT ¹ [11×K ¹ IJ ]
]]

y g ξ, (2.23a)

[11×N ¹ [IN ¹ 11×MKJ ]]y = 1N×1, (2.23b)

[IN ¹ 11×NMKJ ]y = 1N×1, (2.23c)
[

11×N ¹
[

[ps
1]

T ¹ 11×J

]

, . . . ,11×N ¹
[

[ps
N ]

T ¹ 11×J

]]

y f ps
total, (2.23d)

[

11×N ¹
[

[11×NM ¹ [IK ¹ 11×J ]]» [1K×1 ¹ [pr]T ]
]]

y f pr
total, (2.23e)

where 1v×u is a v × u matrix composed by 1’s, Ia is an a × a identity matrix and the

operators ¹, » and (·)T are the Kronecker product, the Hadamard product and the trans-

pose matrix, respectively. Furthermore, we assume r = [r1, . . . , rM ]T , ξ = [À1, . . . , ÀJ ]
T ,

ps
n = [ps

n,1,1, . . . , p
s
n,M,K ]

T , ∀n ∈ N , ps
total = [P s], pr

total = [P 1, . . . , PK ]T and, finally,

y = [y1,1,1,1,1, y1,1,1,1,2, . . . , yN,N,M,K,J ]
T , which is the vector of optimization variables.

Based on the knowledge of the problem constraints in equations (2.23), we can

define the set Υ as as the solution space of optimization problems (2.20), (2.21) and (2.22). Υ

is defined in (2.24) where B is a set of binary vectors such that z = N2MKJ .

Υ =
{

y | Ay f b,Λy = d, y ∈ Bz×1
}

, (2.24a)

A =











11×N2 ¹
[

rT ¹ [11×K ¹ IJ ]
]

11×N ¹
[

[ps
1]

T ¹ 11×J

]

, . . . ,11×N ¹
[

[ps
N ]

T ¹ 11×J

]

11×N ¹
[

[11×NM ¹ [IK ¹ 11×J ]]» [1K×1 ¹ [pr]T ]
]











, b =











−ξ
ps

total

pr
total











,

Λ =





11×N ¹ [IN ¹ 11×MKJ ]

IN ¹ 11×NMKJ



 and d =





1N×1

1N×1



 ,

Moreover, we can also represent the variables R, Rj , P and Pj in matrix form as

shown in (2.25a), (2.25b), (2.25c) and (2.25d), respectively. θj and ϑj are the j-th rows of
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matrices Rj and Pj defined in (2.26), respectively 5.

R =
[

11×N2 ¹
[

rT ¹ [11×KJ ]
]]

y, (2.25a)

Rj = θjy, (2.25b)

P =
[

[ps*]T + 11×N ¹ [pr]T
]

y + pc, (2.25c)

Pj = ϑjy + pjc. (2.25d)

Rj =
[

11×N2 ¹
[

rT ¹ [11×K ¹ IJ ]
]]

, (2.26a)

Pj =
[

[Ps*] + 11×N ¹
[

[11×NMK ¹ IJ ]» [1J×1 ¹ [pr]T ]
]]

, (2.26b)

where

Ps* =
[

11×N ¹
[

[ps
1]

T ¹ IJ
]

, . . . ,11×N ¹
[

[ps
N ]

T ¹ IJ
]]

, (2.27a)

pr = [pr1,1,1,1, p
r
1,1,1,2, . . . , p

r
N,M,K,J ]

T . (2.27b)

Therefore, we can finally rewrite the problems (2.20), (2.21) and (2.22) in their final forms as

presented in (2.28a), (2.28b) and (2.28c), respectively.

min
y∈Υ

P (y), (2.28a)

max
y∈Υ

R(y)

P (y)
, (2.28b)

max
y∈Υ

min

{

R1(y)

P1(y)
,
R2(y)

P2(y)
, . . . ,

Rj(y)

Pj(y)
, . . . ,

RJ(y)

PJ(y)

}

. (2.28c)

According to the analysis above, note that problem (2.28a) belongs to the class of

integer linear problems (ILPs) and, therefore, it can be optimally solved by standard algorithms

based on branch and bound (BB) method (Lawler; Wood, 1966). In general, in these algorithms

for an arbitrary number of integer variables, l, the number of linear programming subproblems

to be solved is at least (
√
2)l. Meanwhile, the number of iterations needed to solve one linear

programming problem with t constraints and l variables is approximately 2(l + t), and each

iteration encompasses lt− t multiplications, lt− t summations, and l − t comparisons. Thus,

5 A generic matrix expression of type a
T
v + s, where s is a scalar and v is a vector can be rewritten equivalently

as aTv simply making a = [aT s]T and v = [vT 1]T .
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Algoritmo 1: Dinkelbach algorithm applied in problem (2.28b)
Require: ϵ > 0; i← 0; ¸i g 0;

1: y⋆
i ← argmax

y∈Υ {R(y)− ¸i · P (y)};
2: while R(y⋆

i )− ¸i · P (y⋆
i ) > ϵ do

3: ¸i+1 ← R(y⋆
i )

P (y⋆
i )

;

4: y⋆
i+1 ← argmax

y∈Υ {R(y)− ¸i+1 · P (y)}; i← i+ 1;
5: end while; return y⋆

i−1;

the required total number of operations is
√
2
l
2(l + t)(2lt− 3t+ l) (Lima et al., 2016). Based

on that and according to Table 3 the worst-case computational complexity to obtain the optimal

solution to problem (2.28a), retaining the term of higher order, is O(2N2MKJ).

Unlike problem (2.28a), problems (2.28b) and (2.28c) are non-linear and their opti-

mal solutions are usually harder to get. More specifically, problem (2.28b) is a classic problem

of fractional programming with linear terms in the numerator and denominator, whose purpose

is to maximize a single fractional function. The optimal solution of problem (2.28b) can be

obtained by the Dinkelbach algorithm (Dinkelbach, 1967) (Algorithm 1), whose fundamental

idea is to determine the root of the function in an equivalent parametric problem. This algorithm

is based on a theorem by Jagannathan (Jagannathan, 1966) concerning the relationship between

fractional and parametric programming as stated in Proposition 2.

Proposition 2. (Dinkelbach, 1967; Jagannathan, 1966). ¸⋆ = R(y⋆)
P (y⋆)

= max
y∈Υ

{

R(y)
P (y)

}

, where

y⋆ ∈ Υ solves (2.28b) if and only if

max
y∈Υ
{R(y)− ¸⋆ · P (y)} = 0. (2.29)

In Algorithm 1 we initialize the variable ¸i that is used to recast problem (2.28b)

from a fractional to a subtractive form. The new subproblem, which is in a subtractive form (line

1 of Algorithm 1) belongs to the class of ILP problems. Between lines 2 and 5, the following tasks

are executed iteratively: the value of ¸i is redefined according to the solution obtained in line 1,

a new ILP is solved and a stop criterion is evaluated. For integer or combinatorial optimization

problems according to (Anzai, 1974), the convergence to the optimal solution is guaranteed if

the search space is limited. Given that Υ is limited due to the power and QoS constraints, the

convergence of our proposed optimal solution to the problem (2.28b) is guaranteed. Thus, the

Dinkelbach algorithm is able to solve integer fractional problems by solving a sequence of ILP

subproblems.
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Algoritmo 2: Generalized Dinkelbach algorithm applied in problem (2.28c)
Require: ϵ > 0; i← 0; ¸i g 0;

1: while F (¸i) > ϵ do

2: y⋆
i ← argmax

y∈Υ {minj∈J {Rj(y)− ¸iPj(y)}};
3: F (¸i+1)← minj∈J {Rj(y

⋆
i )− ¸iPj(y

⋆
i )};

4: ¸i+1 ← minj∈J

{

Rj(y
⋆
i )

Pj(y⋆
i )

}

; i← i+ 1;

5: end while; return y⋆
i−1;

When problem (2.28b) is concerned, we can note that it is less complex than problem

(2.28c) since in the latter we are interested in maximizing the minimum of a set of ratios instead

of only one. Indeed, problem (2.28c) can be cast into the framework of generalized fractional

programming and it is formally specified as a nonlinear program where a nonlinear function

defined as the minimum over several ratios of functions should be maximized. Fortunately,

Dinkelbach’s approach to classical fractional problems can be generalized and, consequently, the

result of Proposition 2 as well. As a result, a similar approach can be applied to a generalized

fractional programming problem and we formally present this result in Proposition 3.

Proposition 3. (Zappone et al., 2016; Jagannathan, 1966; Crouzeix; Ferland, 1991). A vector

y⋆ ∈ Υ solves (2.28c) if and only if

y⋆ = argmax
y∈Υ

{

min
j∈J
{Rj(y)− ¸⋆Pj(y)}

}

(2.30)

with ¸⋆ being the unique zero of the auxiliary function F (¸):

F (¸) = max
y∈Υ

{

min
j∈J
{Rj(y)− ¸Pj(y)}

}

. (2.31)

Hence, according to Proposition 3, solving (2.28c) is equivalent to finding the

unique zero of function F (¸) and its proof can be found in (Crouzeix; Ferland, 1991). As

already mentioned, this result can be seen as a generalization of the approach proposed by

Dinkelbach. Based on Proposition 3 the Algorithm 2 called generalized Dinkelbach algorithm

can be employed to find the optimal solution to problem (2.28c). In this algorithm, it can be

shown that the update rule for ¸ follows Newton’s method applied to the function F (¸). In this

way, the value of ¸ is updated at each iteration where ¸0 is its initial value. According to (Zappone

et al., 2016), ¸ converges to the global optimum of problem (2.28c) provided that problem (2.30)

(line 2 of Algorithm 2) can be globally solved at each iteration. Given that problem (2.30) is an

ILP, its optimal solution can be obtained by standard algorithms and, similarly to Algorithm 1,
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Algorithm 2 solves problem (2.28c) by solving a sequence of ILP subproblems until F (¸) f ϵ

(line 1).

In short, the algorithms 1 and 2 solve the problems (2.28b) and (2.28c), respectively,

by iteratively solving multiple instances of ILPs subproblems. Since each ILP subproblem has

the same number of constraints and variables of problem (2.28a), then both Algorithm 1 and

Algorithms 2 has a worst-case computational complexity O(2N2MKJ).

2.6 Simulation Results

In this section, we evaluate the performance of the involved solutions by means of

computer simulations. Firstly, we present the simulations modeling and parameters in Subsection

2.6.1 and then we discuss the obtained results.

2.6.1 Parameters and Simulation Characteristics

Tabela 4 – Simulation parameters.

Parameter Value

Number of subcarrier 12− 32
Number of relays 1− 5

Number of destination nodes 4
Number of MCSs 11

Static circuit power 100 mW
Noise power spectral density −174 dBm/Hz

We assume that the total power available in each relay is equal to the total power

available at the source that is 27 dBm (Tao et al., 2012). The relays are uniformly distributed

over a square with area of 0.25 km2 according to Figure 3 and similar to the scenario addressed

in (Dang et al., 2010).

In this work, we assume that the possible data rate transmission rates in kbps are

rm ∈ {0, 20, 40, · · · , 200}, ∀m ∈ M. The SNR intervals for transmission of each MCS

were extracted through the discretization of the Shannon curve with µm = 2rm/B − 1 where

B = 15 kHz is the band occupied by a subcarrier. The propagation effects modeled in this paper

are mean path loss (Sun et al., 2011), log-normal shadowing (standard deviation equal to 8 dB)

(Chen et al., 2017), and fast fading following a Rayleigh distribution. In addition, we assume

that a central node (where resource allocation decisions are made) has perfect CSI.
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Figura 3 – Scenario used in computational simulations for the problems (2.20), (2.21) and

(2.22).
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2.6.2 Discussion

In Figure 4, we have the total system EE versus the number of iterations of Algo-

rithm 1 to solve QEE problem for different number of relays in the considered scenario. In

this figure, we can observe the efficiency of Algorithm 1 since the convergence to the optimal

solution is reached within few iterations. In addition, this figure also shows the gains in EE due

to the additional space diversity achieved by the combination of an increased number of relays

nodes and opportunistic relay selection.

In Figure 5 the total EE for the QEE and TPM problems versus the level of QoS

required by the destination nodes are ploted. Firstly, we observe that the EE of QEE solution

decreases with the QoS requirements. Basically, the more stringent the QoS requirement of

destination nodes becomes, the harder it is to find efficient subcarrier pairing, assignment and

relay selection to improve EE. On the other hand, the solution to TPM does not intend to

maximize EE but to minimize the total transmit power subject to minimum QoS constraints.

Therefore, the destination nodes receives only its minimum required data rate even if additional

data rate would be beneficial for EE. Therefore, the EE of TPM solution achieves the maximum

EE in an intermediary QoS level.

An important aspect that can be seen from Figure 5 is the convergence of the EE for

QEE and TPM solutions at high QoS requirements. The reason for that behavior is straighforward:

as QoS demands are increased, the number of feasible solutions (that complies with problem

constraints) to both optimization problems (QEE and TPM) is considerably reduced. Thus, at

high QoS requirements the QEE solution cannot deliver data rates beyond the required QoS so

that the total EE is maximized by minimizing the total transmit power and this is exactly what
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Figura 4 – Total energy efficiency versus the

the number of iterations of Algo-

rithm 1.
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Figura 5 – Total energy efficiency versus the

data rate required by destination no-

des.
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the TPM solution does. Therefore, the optimization objective function plays a less important role

in this context (at high QoS demands) and the solutions to both problems tend to become similar.

From an application point of view, this result has important consequences. Basically,

it shows that optimizing the EE by QEE solution is advantageous for low and medium QoS

requirements. When the QoS demand is high, the solution to the TPM problem, which can be

obtained by solving only one instance of an ILP problem, is similar in terms of total EE to the

solution of QEE problem, which is obtained by solving an ILP problem per iteration according

to Algorithm 1. This shows that the optimization of EE can be achieved with lower complexity

in some scenarios.

However, when the total EE is maximized in a scenario with many destination nodes,

individual EE fairness in resource allocation of all these nodes is not guaranteed. In order

to maximize the total EE, it is natural to allocate most of the resources to the links in better

channel conditions that can make better use of the transmit power. With this, the individual

EE of each destination node in general can be quite distinct from each other which can lead to

severe unfairness among them. As discussed before, the max-min QEE problem is essentially a

fairness problem since its optimal solution can deliver the higher individual EE floor as shown in

Figure 6, which shows the CDFs for the minimum individual EE of the QEE, TPM and max-min

QEE problems. Roughly speaking, max-min QEE solution is the one that most cares about

the worst destination node and the impact of this is a high fairness among the individual EE

of all destination nodes of the system. Indeed, this can be viewed in Figure 7, which shows
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Figura 6 – CDF for the minimum individual

energy efficiency of the QEE, TPM

and max-min QEE problems.
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Figura 7 – Individual energy efficiency versus

the number of iterations of Algo-

rithm 2.
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the individual EE versus the number of iterations of Algorithm 2. Note in this figure that the

individual EE converges to very close values, proving that the max-min QEE solution can ensure

fairness among all destination nodes in terms of EE.

However, although Figure 7 shows the convergence of the individual EE to very

close values, it does not show numerically the fairness level achieved. One well known way to

quantitatively measure the fairness level is to employ the Jain’s fairness index (Jain et al., 1984).

It is defined as a continuous non-convex function I(·) such that for the EEs shown in (2.13) we

have I(EE1, . . . , EEJ) =
(
∑

∀j∈J
EEj)

2

J
∑

∀j∈J
EE2

j

with values in the interval [ 1
J
, 1], i.e., it ranges from 1

J

to 1 so that a large value of I(·) represents fairer resource allocation from the system perspective

(Huaizhou et al., 2014).

Taking this into account, in Figure 8 we plot I(EE1, . . . , EEJ) for the three pro-

blems addressed in this chapter versus the level of QoS required by the destination nodes. Note

firstly that I(EE1, . . . , EEJ) for the max-min QEE problem is practically constant and very

close to 1 (maximum value of I(EE1, . . . , EEJ)) independent of QoS requirements. This is an

expected result according to Figure 6 and Figure 7. In Figure 8 we highlight I(EE1, . . . , EEJ)

for QEE problem that grows with the increase of QoS requirements, i.e., the resource allocation

of QEE problem becomes fairer in terms of EE as more data rate is required by destination

nodes. This shows that very unfair resource allocation in terms of EE tends to occur only at

low QoS requirements and the reason for this is very simple: only at low QoS requirements

is it possible to assign more resources to the destination nodes in better channel conditions to
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Figura 8 – Jain’s fairness index (Jain et al.,

1984) versus the data rate required

by destination nodes.
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Figura 9 – Total energy efficiency versus the

data rate required by destination no-

des.
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improve EE. As QoS demands are increased, the trend is that QoS is only minimally satisfied for

all the destination nodes so that the individual EE are naturally similar. This result is particularly

interesting because it shows that at high QoS requirements, besides being possible to obtain the

maximization of total EE more easily by using TPM solution as shown previously, fairness in

resource allocation in terms of EE among all destination nodes is also guaranteed.

Finally, we show in Figure 9 the total EE for the QEE and max-min QEE problems

versus the level of QoS required by the destination nodes. In this figure, note first that offering

fairness in resource allocation can result in considerable losses to the total EE. However, the

greatest losses only tend to occur at low QoS requirements, since for high requirements the total

EE for the QEE and max-min QEE problems become closer. In fact, this behavior is expected

due to the result of Figure 8.

2.7 Partial Conclusions

In this chapter we studied the problems of total EE maximization, total power

minimization and minimum individual EE maximization in a cooperative scenario with multiple

relays and destination nodes assuming QoS constraints. The problems of total EE maximization

and minimum individual EE maximization were formulated as fractional integer optimization

problems. By using fractional and generalized fractional programming theory, we were able to

obtain the optimal solution to these problems by solving a sequence of integer linear subproblems.
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By identifying an important property through the analysis of the signal processing done in the

relays, we were able to considerably reduce the size of the three optimization problems. Finally,

we compared the performance of the total EE for the three problems discussed in this paper and

also discussed about fairness in resource allocation among all destination nodes. One important

conclusion obtained from the results was that at high QoS requirements the total EE is maximized

even when the problem objective is to minimize the total transmit power. Therefore, the EE

maximization can be obtained with simpler algorithms when the QoS demand is high.
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3 FAIRNESS-ORIENTED POWER ALLOCATION IN ENERGY HARVESTING AI-

DED MASSIVE MIMO SYSTEMS

3.1 Introduction

In this chapter, we consider an EH-aided massive MIMO system and investigate the

fairness problem of maximizing the minimum system SINR while fulfilling QoS requirements.

This chapter is organized as follows. Section 3.2 provides the system modeling and EH model.

The mathematical formulation of the problem discussed in this chapter is presented in Section

3.3. In Section 3.4 we provide the optimal solution of the formulated problem and we present an

alternative solution for it. Section 3.5 presents numerical results to evaluate the performance of

these proposals and other discussions. Finally, Section 3.6 concludes the chapter by summarizing

and highlighting its main points.

3.2 Channel and Signal Modeling

The studied system consists of a coverage area with N H-APs that simultaneously

serve in the downlink K terminals1 in the same time-frequency resource with N k K. All

H-APs and terminals are equipped with a single antenna and they are randomly located in a large

area. We consider that each H-AP is powered by the electrical grid and additionally owns a battery

that is connected to an EH source. Furthermore, all H-APs are connected to a central processing

unit via fast backhaul links, which allows important information exchanges such as battery levels,

pilot signals, precoders information, etc. The set of H-APs and terminals comprises a distributed

massive MIMO system illustrated in Figure 10. We assume that the central processing unit

has perfect CSI. We consider the transmission process along L successive time transmission

time intervals (TTIs) with duration equal to Ä . According to the previous definitions we can

define the following sets: N = {1, . . . , N} as the set of all H-APs, K = {1, . . . , K} the set

of all terminals and L = {1, . . . , L} the set of all TTIs. The channel coefficients between the

H-APs and the terminals are represented by a complex matrix Gl = [gl
1, gl

2, . . . , gl
K ] in which

gl
k = [gl

n,k]n∈N ∈ C
N×1 is the column channel vector of terminal k ∈ K at TTI l ∈ L. As we

assume non co-located transmit and receive antennas, the spatial correlation is neglected. The

channel coefficient gl
n,k is given by gl

n,k =
√

´n,kh
l
n,k, where hl

n,k is the small-scale component

fading at TTI l ∈ L for H-AP n ∈ N and user k ∈ K and ´n,k represents the large-scale fading

1 In this chapter, we assume that each user owns a mobile terminal and is engaged in a data session. Therefore,
the terms “user” and “terminal” are interchangeable in the chapter.
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Figura 10 – Distributed massive MIMO system in which each H-AP is powered by both an

independent EH source and the electrical grid.

Backhaul processor unit

Electrical grid

EH Source

Battery  

H­AP 1

H­AP 2  H­AP 3  H­AP n 

H­AP N

Terminal 1
Terminal 2  Terminal k 

Terminal K

High­speed backhaul link

+

... ...

...

........................

Hybrid energy supply

+ + + +

Fonte: Created by the author.

component between user k ∈ K and H-AP n ∈ N . The small-scale fading hl
n,k is assumed to

be quasi-static Gaussian independent and identically distributed (i.i.d.). The large-scale fading

component is expressed as ´n,k = ·
d−¿
n,k

d−¿
o

, where ¿ is the path loss exponent, dn,k is the distance

between H-AP n ∈ N and terminal k ∈ K, do is the reference distance and · is a constant related

to the carrier frequency and reference distance.

We denote by wl
k ∈ C

1×N the k-th beamforming vector for terminal k ∈ K at TTI

l ∈ L. The low complexity maximum ratio transmission (MRT) is considered as beamforming

technique. The beamforming vector for terminal k ∈ K and TTI l ∈ L is given by wl
k =

(gl
k
)H

||(Gl)H ||F
,

where || · ||F denotes the Frobenius norm of a matrix and (·)H represents the conjugate transpose

or Hermitian transpose of a matrix. Hence, the received SINR at terminal k ∈ K and at TTI

l ∈ L is expressed as:

µk,l =

∑

n∈N Än,k,l | wl
kgl

k |2
∑

k̃∈K,k̃ ̸=k

∑

n∈N Än,k̃,l | wl
k̃
gl
k |2 + Ã2

, (3.1)

where Än,k,l is the transmit power allocated to terminal k ∈ K on H-AP n ∈ N at TTI l ∈ L and

Ã2 is the variance of the noise that is assumed to be additive white Gaussian noise (AWGN) with

zero mean.
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3.2.1 Energy Harvesting Model

The harvested energy at each H-AP is first stored in a battery with limited storage

capabilities that can store at most Bmax units of energy. On the matter of harvest dynamics,

we consider a first-order stationary Markov model for solar radiation similar to addressed in

(Carvalho et al., 2018) and (Poggi et al., 2000). This basically means that the current state

depends only on the immediately previous state and that the states and transition probabilities

do not vary over time. A state basically determines the amount of energy that is harvested by

the photovoltaic cells that convert energy from the sun into a flow of electrons. In this model,

we consider S states and let P be the square matrix of transition probabilities of order S. This

matrix stores the transition probabilities px,y from state x to state y with x, y ∈ {1, . . . , S}. Let

En,l denote the amount of energy harvested at H-AP n ∈ N during a TTI l ∈ L. We consider

that En,l is a continuous and random variable within the interval [(s− 1)(Bmax/S), s(Bmax/S)]

for s ∈ {1, . . . , S}. This representation of the harvested energy as a continuous random variable

simulates the actual behavior of the harvested solar energy, that presents a continuous nature in

practice (Carvalho et al., 2018).

In order to provide QoS guarantees to the connected terminals, we consider not only

the renewable energy source but also energy drawn from the electrical grid. This allows to

compensate for the randomness of the energy drawn from EH sources (Aggarwal et al., 2017).

Therefore, the allocated power, Än,k,l, is such that Än,k,l = Äe
n,k,l + Äg

n,k,l, where Äe
n,k,l and Äg

n,k,l

denote the power drawn from EH sources and the electrical grid, respectively. We also define Efix

for each H-AP as a constant energy quantity required to transmit information about the current

battery level and received pilot signal to the central unit from the H-APs, as well as the energy

consumed by the circuit. The energy from the circuit includes the power consumed by the digital

to analog converters, mixers and filters. Since the H-APs are powered by both EH sources and

the electrical grid, the required energy for the H-APs operation can be written as:

Efix = Ee
n,l + Eg

n,l, ∀n ∈ N , ∀l ∈ L, (3.2)

where Ee
n,l and Eg

n,l are the variable energy drawn from EH sources and the electrical grid at

H-AP n ∈ N and during TTI l ∈ L, respectively. Furthermore, we set in (3.3) the total energy

consumed from EH sources, Ee
total, and also the total energy consumed from the electrical grid,

Eg
total, during the L TTIs, respectively.
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Ee
total = Ä

∑

n∈N

∑

k∈K

∑

l∈L

Äe
n,k,l +

∑

n∈N

∑

l∈L

Ee
n,l, (3.3a)

Eg
total = Ä

∑

n∈N

∑

k∈K

∑

l∈L

Äg
n,k,l +NLEfix −

∑

n∈N

∑

l∈L

Ee
n,l. (3.3b)

The summary of the main variables of this chapter is shown in Table 5 2.

Tabela 5 – Summary of the main variables of chapter 3

Variable Description

N Number of H-APs.
K Number of terminals.
L Number of TTIs.
N Set of all H-APs.
K Set of all terminals.
L Set of all TTIs.

ρe
n,k,l Power drawn from EH sources.

ρ
g
n,k,l Power drawn from the electrical grid.

ρn,k,l Allocated power (ρn,k,l = ρe
n,k,l + ρ

g
n,k,l).

Ee
n,l Energy drawn from EH sources.

E
g
n,l Energy drawn from the electrical grid.

Efix Constant energy quantity required for each H-AP during a given TTI.
En,l Amount of energy harvested at H-AP n ∈ N during a TTI l ∈ L.
Bmax Maximal battery capacity.
ρmax Maximal transmit power at each H-AP.

3.3 Problem Formulation

The aim of this chapter is to study the max-min fairness problem, where we maximize

the minimum of a metric of interest given some constraints on the resources. In this chapter, we

consider the SINR as the metric of interest. Furthermore, in this problem we also consider two

groups of users. In the first group we have the users that require a high QoS requirement, called

gold users and they are contained in the set S ¢ K. The remaining users belong to the second

group where users do not have explicity QoS requirements and are supposed to be using best

effort services. However, due to the nature of the max-min fairness problem, the SINRs of the

users outside the set S will reach the highest possible SINRs in order to increase the fairness

level in the system. Roughly speaking, in the optimal solution of our problem the stringent

requirements of the gold users are satisfied while the SINRs of the other users is improved

as much as possible. The problem to maximize the minimum SINR of the system, in offline
2 The variables defined in the Table 5 are valid only in this chapter.
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scenarios, is shown in (3.4). As discussed in Section 1.2.5, considering an offline approach

means assuming that the nodes have full knowledge of the CSI and of the amount and arrival

time of the harvested energy. Offline approaches are optimistic/idealistic situations in practice,

but it can provide analytical/heuristic solutions for designing the optimal transmission strategy.

On the other hand, with online approaches, the nodes only have statistical knowledge of the

energy harvesting process and CSI. As already discussed, note that our objective in (3.4a) is

to maximize the minimum achievable SINR among all the users, thereby, providing max-min

fairness. Regarding the problem constraints, in (3.4b) a minimum received SINR, denoted µth,

to each gold user k ∈ S and TTI l ∈ L is guaranteed. The set of constraints (3.4c) ensure the

energy causality, i.e., the consumed harvested energy at H-AP n ∈ N cannot exceed the energy

harvested by it. The set of constraints (3.4d) specifies that the harvested energy at the current

TTI cannot exceed the maximal battery capacity. Constraint (3.4e) mathematically states that

the total energy spent in the system from the grid must be lower a fraction, À, from the total

renewable energy. The lower the value of À, the less grid energy is consumed, i.e., the system

operates towards self-sustainability. Our main idea with this constraint is to study the impact of

limitations imposed on the energy sources consumption in the system performance. Furthermore,

this constraint allows the system operators to control the proportion of consumed energy in the

system in different scenarios depending on the financial cost of renewable3 and grid energy. The

set of constraints (3.4f) specifies that the transmit power at each H-AP should not exceed the

limit Ämax due to the limited linear range of the power amplifiers. Finally, constraints (3.4g) and

3 Costs of renewable energy include capital costs such as installing solar cells, sitting costs that involves permits
and community relations, and regulatory barriers. Operational costs of renewable energy are minimal in general.
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(3.4h) ensure the non-negativity of the allocated amounts of power or energy.

max
{Äe

n,k,l
,Ä

g
n,k,l

,Ee
n,l

}
min {µ1,1, µ1,2, . . . , µk,l, . . . , µK,L} , (3.4a)

s.t. µk,l g µth, ∀k ∈ S ¢ K, ∀l ∈ L, (3.4b)

l̃
∑

l=1

(

Ee
n,l + Ä

∑

k∈K

Äe
n,k,l

)

f
l̃
∑

l=1

En,l, (3.4c)

∀n ∈ N , ∀l̃ ∈ L,
l̃
∑

l=1

En,l −
l̃−1
∑

l=1

(

Ee
n,l + Ä

∑

k∈K

Äe
n,k,l

)

f Bmax, (3.4d)

∀n ∈ N , ∀l̃ ∈ L\{1},

Eg
total f ÀEe

total, (3.4e)
∑

k∈K

(Äe
n,k,l + Äg

n,k,l) f Ämax, ∀n ∈ N , ∀l ∈ L, (3.4f)

Äe
n,k,l, Ä

g
n,k,l g 0, ∀n ∈ N , ∀k ∈ K, ∀l ∈ L, (3.4g)

Efix g Ee
n,l g 0, ∀n ∈ N , ∀l ∈ L. (3.4h)

3.4 Proposed Solutions

In this section, we discuss the optimal solution to problem (3.4) presented in Sec-

tion 3.3. Furthermore, we also provide an alternative approach to solve optimally this same

problem.

3.4.1 Optimal Solution

Before discussing the optimal solution to problem (3.4), we introduce its matrix mo-

deling, defining first u = [Äg
1,1,1, . . . , Ä

g
N,K,L, Ä

e
1,1,1, . . . , Ä

e
N,K,L, E

e
1,1, . . . , E

e
N,L]

T as the optimiza-

tion vector of problem (3.4). Through u, we can obtain the subvectors ρg = [Äg
1,1,1, . . . , Ä

g
N,K,L]

T ,

ρ
e = [Äe

1,1,1, . . . , Ä
e
N,K,L]

T and ee = [E1,1, . . . , EN,L]
T as shown below.

ρ
g = Pgu,Pg = [INKL 0NKL 0NKL×NL], (3.5a)

ρ
e = Peu,Pe = [0NKL INKL 0NKL×NL], (3.5b)

ee = Eeu,Ee = [0NL×NKL 0NL×NKL INL]. (3.5c)
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This allows us to rewrite the linear constraints (3.4b), (3.4c), (3.4d), (3.4e), (3.4f),

(3.4g) and (3.4h) as follows, respectively:

[

[11×N ¹ IKL]»
[

1KL×1 ¹
[

11×N ¹ ω
T
]]]

(ρg + ρ
e)

[[11×N ¹ [[1K − IK ]¹ IL]]» [1KL×1 ¹ [11×N ¹ ωT ]]] (ρg + ρ
e) + Ã2

g µth (3.6a)

[IN ¹TL] e
e + [[IN ¹ [11×K ¹TL]]¹ [Ä ]]ρe f [IN ¹TL] e (3.6b)

[IN ¹TL] e− [IN ¹T∗
L] e

e − [[IN ¹ [11×K ¹T∗
L]]¹ [Ä ]]ρe f b (3.6c)

Eg
total f ÀEe

total (3.6d)

[IN ¹ [11×K ¹ IL]] (ρ
g + ρ

e) f ρmax (3.6e)

ρ
g,ρe g 0NKL×1, (3.6f)

efix g ee g 0NL×1, (3.6g)

where ω = [| w1
1g1

1 |2, | w2
1g2

1 |2, | w3
1g3

1 |2, . . . , | wL
KgL

K |2]T , e = [E1,1, . . . , EN,L]
T and Tv

is a v × v lower triangular matrix composed by 1’s. T∗
v is identical to Tv without the last

row. Moreover, b = 1N(L−1)×1 ¹ [Bmax], ρmax = 1NL×1 ¹ [Ämax], efix = 1NL×1 ¹ [Efix]. Ee
total

and Eg
total can be rewritten as Ee

total = [11×NKL ¹ [Ä ]]ρe + [11×NL]e
e and Eg

total = [11×NKL ¹
[Ä ]]ρg − [11×NL]e

e + NLEfix, respectively. For the sake of convenience we define again the

following matrix operators ¹, » and (·)T are the Kronecker product, the Hadamard product and

the transpose matrix, respectively.

Given the constraints set in (3.6), we can define as U the domain of the optimization

of problem (3.4) as shown in (3.7).

U =
{

u | Φu f µ, u ∈ R
z×1
+

}

, (3.7a)

Φ =















































[Q[Pg +Pe]]¹ [µth]−P[Pg +Pe]

[IN ¹TL]E
e + [[IN ¹ [11×K ¹TL]]¹ [Ä ]]Pe

− [IN ¹T∗
L]E

e − [[IN ¹ [11×K ¹T∗
L]]¹ [Ä ]]Pe

Eg
total − ÀEe

total

[IN ¹ [11×K ¹ IL]] (P
g +Pe)

−Pg

−Pe

−Ee

Ee















































,µ =















































0KL×1

[IN ¹TL] e

b− [IN ¹TL] e

0

ρmax

0NKL×1

0NKL×1

0KL×1

efix















































,
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Algoritmo 3: Generalized Dinkelbach algorithm applied in problem (3.10)
Require: ϵ > 0; i← 0; ¸i g 0;

1: while F (¸i) > ϵ do

2: u⋆
i ← argmax

u∈U {mink∈K,l∈L{fk,l(u)− ¸igk,l(u)}};
3: F (¸i+1)← mink∈K,l∈L{fk,l(u⋆

i )− ¸igk,l(u
⋆
i )};

4: ¸i+1 ← mink∈K,l∈L {fk,l(u⋆
i )/gk,l(u

⋆
i )} ; i← i+ 1;

5: end while return u⋆
i−1;

where z = NL(2K + 1) and:

P =
[

[11×N ¹ IKL]»
[

1KL×1 ¹
[

11×N ¹ ω
T
]]]

, (3.8a)

Q =
[

[11×N ¹ [[1K − IK ]¹ IL]]»
[

1KL×1 ¹
[

11×N ¹ ω
T
]]]

+ Ã2. (3.8b)

Finally, we can rewrite SINR in (3.1) according to (3.9).

µk,l =
fk,l(u)

gk,l(u)
, (3.9a)

fk,l(u) = pk,lu, (3.9b)

gk,l(u) = qk,lu, (3.9c)

where pk,l and qk,l are the ((k − 1)L + l)-th row of matrices P and Q, respectively. Thereby,

since problem (3.4) belongs to the class of generalized fractional problems we can rewrite it

according to (3.10) and re-employ generalized Dinkelbach algorithm (Algorithm 3) to solve it.

However, note that in this case the problem that is solved iteratively between lines 2 and 5 of

Algortithm 3 is a linear programming (LP) and, therefore, it can be optimally solved employing

the Karmarkar algorithm whose worst-case computational complexity is polynomial given by

O((NL(2K + 1))3.5) (Karmarkar, 1984).

max
u∈U

min

{

f1,1(u)

g1,1(u)
,
f1,2(u)

g1,2(u)
, . . . ,

fk,l(u)

gk,l(u)
, . . . ,

fK,L(u)

gK,L(u)

}

. (3.10a)

3.4.2 Alternative Solution

As discussed earlier, problem (3.4) can be seen as a problem of fairness maximization

and its purpose is to ensure the highest SINR floor for a given set of constraints. This reasoning

is particularly interesting because we can formulate another optimization problem equivalent to

problem (3.4) but that allows the search for its optimal solution following another streategy. For
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Algoritmo 4: BIM-based proposed solution for problem (3.10)
Require: ϵ > 0; i← 1; j ← 1; ai ← 0; bi ← µth; Θ← ∅;

1: while bi − ai > ϵ do

2: set εi ← (ai + bi)/2;
3: if problem (3.11) is feasible then

4: ¹j ← εi; Θ← Θ ∪ {¹j}; j ← j + 1;
5: i← i+ 1; ai ← (ai + bi)/2; bi ← bi−1;
6: else

7: i← i+ 1; bi ← (ai + bi)/2; ai ← ai−1;
8: end if

9: end while return Θ;

this, we present the feasibility problem in (3.11), where it is an LP for a specific value of ε ∈ R.

We can demonstrate that through (3.11) it is possible to find the highest value of ε searching it

in a given interval following a processing based on the bisection method (BIM). This result is

presented in Proposition 4.

find
u∈U

u, (3.11a)

s.t. µk,l(u) g ε, ∀k ∈ K, ∀l ∈ L. (3.11b)

Proposition 4. Let ε⋆ be the highest value such that µk,l g ε⋆, ∀k ∈ K, ∀l ∈ L for the optimal

solution of problem (3.10) by Algorithm 3. Assuming that ε⋆ ∈ [a1, b1], then it is possible to find

ε⋆ through a sequence of feasibility tests on the constraints in problem (3.11) by changing ε

according to the bisection method.

Demonstração. Suppose ε⋆ ∈ I1 = [a1, b1] such that a1 f ε⋆, ε1 f b1 and an initial guess for ε1

as ε1 = a1+b1
2

. If problem (3.11) is feasible for ε1 then I2 = [a2, b2] with a2 =
a1+b1

2
and b2 = b1.

If infeasible, we have that b2 = a1+b1
2

and a2 = a1. In any case, we now have ε2 = a2+b2
2

and I1 £ I2 such that b2 − a2 = 1
2
(b1 − a1) with again a2 f ε⋆, ε2 f b2 since we are

intuitively back at the start but with a smaller interval. Continuing the process by induction,

we have at the i-th iteration I1 £ I2 £ I3 £ I4 · · · Ii−1 £ Ii and bi − ai =
1

2i−1 (b1 − a1) with

εi =
ai+bi

2
such that ai f ε⋆, εi f bi. Now, making i→∞, we have limi→∞ bi − limi→∞ ai =

limi→∞
1

2i−1 (b1 − a1)→ 0 so that ε⋆ and εi ∈ ∩∞i=1Ii. Hence, since limi→∞ ai = limi→∞ bi then

it implies limi→∞ ai = limi=∞ bi = limi→∞ εi = ε⋆. The proof is complete.

Proposition 4 leads to Algorithm 4. The basic idea of this algorithm is to repeatedly

bisect a given starting range and then select a subinterval where the value of ε⋆ must lie for
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further processing. This procedure is based on BIM. Moreover, the choice of subinterval is due

to the feasibility of problem (3.11) for a given value of εi at the i-th iteration, i.e., the optimal

solution of problem (3.11) does not necessarily matter4. Finally, Algorithm 4 returns the set

Θ = {¹1, ¹2, . . . , ¹j, . . . } with all the values of ¹j that make problem (3.11) feasible and note

that exactly +log2((b1 − a1)/ϵ), iterations are required before it terminates. However, strictly

speaking, the optimal solution of problem (3.10) could only be obtained when j →∞. Given

that the feasibility of problem (3.11) can be determined employing Karmarkar algorithm, the

worst-case computational complexity of Algorithm 4 is also O((NL(2K + 1))3.5).

3.5 Simulation Results

In this section, we evaluate the proposed solution (Algorithm 4) and compare it with

the optimal solution (Algorithm 3). We firstly present the simulation parameters and, after that,

the results and discussions are presented.

3.5.1 Parameters and Simulation Characteristics

Tabela 6 – Simulation parameters.

Parameter Value

Number of H-APs 50− 100
Number of terminals 4− 12

Number of TTIs 5
Duration of TTI 1 ms

Outer circle radius 500 m
Inner circle radius 50 m

γth 6− 22 dB
ρmax 1 W
ξ 1− 1.15

Bandwidth 5 Mhz
Noise power spectral density −174 dBm/Hz

In our scenario we consider two concentric circular areas with radius r and R with

r < R. N H-APs are uniformly distributed in the inner circle (with radius r) while terminals

4 A feasible solution for a system of linear inequalities can be found employing, e.g, the relaxation method,
introduced by Agmon (Agmon, 1954) and Motzkin and Schoenberg (Motzkin; Schoenberg, 1954). In literature
there are many different versions of this method such as (Telgen, 1982), where it is generalized to handle also the
infeasibility of systems. Furthermore, in (Basu et al., 2013) is discussed another method recently proposed by
Chubanov that is also useful for determining the feasibility of a linear problem. However, in practice, knowing
if problem (3.11) for a given ε is feasible can be done simply by searching for its optimal solution employing
algorithms of low computational complexity such as Karmarkar algorithm.
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Figura 11 – Minimum SINR (dB) versus num-

ber of iterations of Algorithm 3 for

different values of N .
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Figura 12 – Minimum SINR (dB) and average

SINR (dB) versus the number of

terminals.

4 5 6 7 8 9 10 11 12

Number of terminals

2

3

4

5

6

7

8

9

10

11

S
IN

R

Minimum SINR

Average SINR

Fonte: Created by the author.

are uniformly distributed in the larger circular coverage area (with radius R). Both scenario and

channel model used in this chapter are similar to the one employed in (Hamdi et al., 2017). In

addition, our EH model is based on the works (Carvalho et al., 2018) and (Poggi et al., 2000).

Table 6 summarizes the main simulation parameters.

3.5.2 Discussion

Figure 11 shows the minimum SINR versus the number of iterations of Algorithm

3, considering 50, 75 and 100 antennas in the considered scenario. Although the number of

antennas varies, we keep constant the total power in the system so that it does not impact

the results. In addition, the number of terminals is also kept fixed. Firstly, it is possible to

observe the convergence of Algorithm 3 to the optimal solution of problem (3.4). Another

point to be highlighted is the important impact of varying the number of antennas that is

capable of significantly increasing the SINR floor, ensuring a better link quality to all terminals

and, consequently, a higher fairness level between them. Thanks to improved beamforming

performance due to the increase in the number of antennas in the system, it is possible to obtain

SINR gains without the need to increase the power consumption accordingly.

We also keep constant the total power as well as the number of antennas in Figure 12

and we plot average SINR and minimum SINR versus the number of terminals. As it can be seen,

increasing the number of terminals an opposite effect compared with the increase in the number
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Figura 13 – Jain’s fairness index obtained from

the optimal solution of problem

(3.4) versus µth (dB).
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Figura 14 – Minimum SINR (dB) versus num-

ber of iterations of Algorithm 3 for

different initial values of ¸.
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of antennas, i.e., the more terminals in the system, the lower the SINR floor and, consequently,

the lower the average SINR as well. As both total power and the number of antennas are fixed

and as the QoS of gold users is a strict requirement, less radio resources are left for the other

users leading to a lower SINR floor.

The fairness level is analyzed employing the Jain’s fairness index applied to the

SINRs shown in equation (3.1). Therefore, the Jain’s fairness index is given by I(µ1,1, . . . , µK,L) =

(
∑

∀k∈K

∑
∀l∈L

µk,l)
2

KL
∑

∀k∈K

∑
∀l∈L

µ2

k,l

with values in the interval [ 1
KL

, 1]. Thus, we plot in Figure 13 I(µ1,1, . . . , µK,L)

versus µth (SINR threshold for gold users). It is possible to note a high fairness level for low

thresholds of µth, but this level tends to decrease as µth increases. Indeed, this is expected because

as we increase the QoS requirements of the group S , more resources need to be allocated to gold

users decreasing the SINR floor in the system (minimum user SINR) and, thus, decreasing the

fairness level. The increase in µth produces the same behaviour to the increase in the number of

terminals as explained in Figure 12.

The convergence shown in Figure 11 can be speed-up and to explain this we plot

again in Figure 14 the minimum SINR versus number of iterations of Algorithm 3. However,

in this plot we consider three different initial values of ¸. In this figure, ¹1 and ¹2 (¹2 > ¹1) are

obtained from the set Θ that is returned by Algorithm 4, i.e., ¹1 is the first value found that makes

problem (3.11) feasible ¹2 is the second one, and so on. In this result, we highlight the relevance

of the set Θ returned by Algorithm 4 since the values contained in this set can be used as initial

thresholds for Algorithm 3 so that its convergence can be reached more rapidly. This result is
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Figura 15 – Performance loss to the optimal

solution (%) versus the number of

iterations of BIM-based proposed

solution (Algorithm 4).
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Figura 16 – Ratio between grid energy and har-

vested energy versus the number of

iterations of BIM-based proposed

solution (Algorithm 4).
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particularly interesting since Algorithm 4 can both improve the performance of Algorithm 3 and

can also find an optimal solution for problem (3.4) according to Proposition 4.

The performance loss to the optimal solution versus the number of iterations of BIM-

based proposed solution (Algorithm 4) is plotted in Figure 15. As it can be seen, the decreasing

behavior of the error curve shown in this figure shows the convergence of the solution obtained

from Algorithm 4 to the optimal solution of problem (3.4). As an example, with 10 iterations, the

performance loss to the optimal solution is only 10−1%. The convergence of Algorithm 4 to the

optimal solution can also be seen from another point of view in Figure 16, which shows the ratio

Eg
total/E

e
total for different values of À versus the number of iterations of Algorithm 4. This energy

ratio is related to constraint (3.4e) from problem (3.4). As the aim of problem (3.4) is to ensure

the maximum SINR floor and assuming a good spatial multiplexing capacity of MRT in massive

MIMO regime, in general the constraint (3.4e) is satisfied with equality. This behavior is seen in

Figure 15 where we show the convergence in terms of consumed energy of ratio Eg
total/E

e
total to À.

The progressive increase in energy consumption occurs due to the value ε that also increases

during the iterations of Algorithm 4, demanding, therefore, more energy. Based on that, note

that Figures 15 and 16 show that although there is a performance loss to the optimal solution

for low values of the number of iterations of Algorithm 4, in contrast, there is also less energy

consumed from the electrical grid for the same number of iterations. As it can be seen in Figure

16 with up to 11 iterations of the algorithm 4 we have a ratio Eg
total/E

e
total < 1 which means that
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Figura 17 – Outage probability versus µth (dB)

for the solutions obtained from the

optimal solution (Algorithm 3) and

BIM-based proposed solution con-

figured to 30 iterations (Algorithm

4).
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Figura 18 – Outage probability versus À for

the solutions obtained from the op-

timal solution (Algorithm 3) and

BIM-based proposed solution con-

figured to 30 iterations (Algorithm

4).
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the system consumes more renewable energy than the grid energy and according to Figure 15

the performance loss to the optimal solution for that iteration number is less than 10−1%. In

other words, it is possible to make the system more sustainable in exchange for a very small

performance loss. Therefore, through more careful power optimization and realizing a trade-off

between performance loss and energy consumption, less energy from the electrical grid can be

consumed employing the proposed solution.

The performance of Algorithms 3 and 4 in terms of outage probability versus µth

and À is plotted in Figs. 17 and 18, respectively. In Figure 17 we consider an outage a situation

where constraint (3.4b) cannot be met, whereas for Figure 18 an outage is when constraint

(3.4e) is violated. Despite the similar performance of Algorithms 3 and 4 in terms of outage

probability, according to Figures 13 and 17, the increase of µth can both decrease the fairness

level in the system and lead to a rise in the outage rate so that the QoS requirement of gold

users can become a bottleneck to the system. Now, regarding Figure 18, note that the variable À

also has an important impact on the system performance in terms of outage. This is because À

imposes a limit on the energy consumption, i.e., the amount of energy drawn from the electrical

grid depends directly on À and, therefore, its value can compromise QoS satisfaction as well as

system operation. However, as previously explained, the variable À also is an important tool for
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the system operators since they can adjust the proportion of consumed energy between the grid

and renewable depending on different factor such as the capital and operational costs to use each

energy source.

3.6 Partial Conclusions

In this chapter, we investigated the max-min fairness problem in an energy-harvesting-

aided distributed massive MIMO system. In order to provide fairness in the system we maximized

the minimum SINR in offline scenarios ensuring also QoS constraints. We also modeled a

constraint where the total consumed energy between the grid and renewable sources should

keep a certain proportion. This problem resulted in a generalized fractional programming

problem that was solved optimally using generalizations of Dinkelbach’s approach to fractional

problems. Moreover, we also provided an alternative solution to this same problem based

on the bisection method. In the results we showed firstly that the optimal solution quickly

converges to the optimal solution depending on the initialization of the algorithm. Furthermore,

we showed that the solution based on the bisection method is also able to approximate the optimal

solution in more iterations and offering an interesting trade-off between energy consumption and

performance loss to optimal solution. Finally, we presented the impact of variable such as user

QoS and energy proportion on the the fairness level and outage rate.
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4 CONCLUSIONS AND FUTURE WORK

Along this master’s thesis we basically dealt with QoS-constrained RRA on coopera-

tive networks and on massive MIMO systems. Cooperative networks and massive MIMO are

important technologies for 4G and 5G systems. Our goal was to investigate issues related to EE

and fairness, proposing simplifications or alternative solutions to the problems addressed in each

chapter. A general summary of each chapter is shown below.

In Chapter 1, we presented the important concepts related to the development of the

following chapters. In this way, we addressed fundamental concepts about OFDM and OFDMA,

RRA, cooperative networks, massive MIMO systems and EH technology. Besides, we discussed

several papers correlated to our work and presented our main contributions.

In Chapter 2, we investigated RRA as three optimization problems in the context

of EE in cooperative OFDMA networks with multiple relays and multiple node destinations.

These problems include the problems of total power minimization, total EE maximization,

and finally minimum individual EE maximization. This resulted in fractional and linear non-

convex combinatorial problems that were duly formulated and simplified through a property

that exploits the employment of the DF protocol present in the relays. Then, their respective

optimal algorithms/methods and computational complexities were presented. The provided

optimal solutions to the fractional-nature problems were based on Dinkelbach’s classical and

generalized approach. In the results, we showed the convergence to optimal solution of the

proposed algorithms and gains in terms of total EE as we increase the number of relays in the

system. In addition, we showed that the problems of power minimization and EE maximization

converge to the same total EE as we increase the data rate requirements at the destination nodes.

Indeed, this is an important result because it illustrates that the maximization of the total EE can

be achieved more easily in some scenarios. Finally, we investigated the problem of maximizing

the minimum individual EE and we validated that it is capable of providing high fairness level

in the system in terms of EE. Moreover, we showed that the problems of EE maximization and

minimum individual EE maximization also tend to converge to the same total EE when high data

rate requirements are required.

In Chapter 3, we considered an EH-aided distributed massive MIMO system in

an offline scenario and we investigated RRA as a max-min fairness problem. Thereby, we

formulated an optimization problem with power/energy allocation in order to maximize fairness

in terms of SINR given the constraints on resources. As the formulated problem belongs
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to the class of generalized fractional programming problems, its optimal solution was again

achieved through Dinkelbach’s generalized approach. However, we also provided an alternative

solution based on the bisection method to solve this problem optimally. We also discussed the

computational complexities of the proposed solutions. In the results, we firstly showed that

as we increase the number of antennas at the transmitter the system performance in terms of

minimum SINR increases considerably even with the use of simple beamforming techniques

such as MRT. Moreover, we discussed on fairness-oriented resource allocation and we evaluated

the performance of the proposed solutions. Thereby, we showed that our proposed solution based

on the bisection method is able to converge to optimal solution in a few iterations. Besides, that

solution is also able to speed-up the convergence of the generalized Dinkelbach algorithm and

offering an interesting trade-off between energy consumption and loss of performance to optimal

solution as was discussed. Finally, we also investigated the performance of the system in terms

of outage rate with respect to users QoS and the limitation of grid energy.

Lastly, the work developed in this master’s thesis can open new research directions

to be investigated. For Chapter 2 efficient solutions with low computational cost can be provided

for the problems presented therein. Moreover, considering different scenarios by varying, for

example, the relative distances between the nodes of the current scenario can also be investigated

in the future. This may give rise to new and interesting trade-offs related to EE and fairness.

Regarding Chapter 3, considering imperfect CSI and investigating online scenarios can be

appealing for future research. However, although this leads to a more realistic mathematical

formulation of the problem, it can also bring more complexity in terms of optimal/heuristic

solutions. Another interesting possibility is to integrate promising technologies for the 5G such

as Full-Duplex and nonorthogonal multiple access (NOMA) into the problem. Moreover, note

that in both Chapter 2 and Chapter 3, the RRA problems were proposed to work only over

downlink transmissions. Therefore, in future works, the solutions proposed in this thesis could

be adapted to uplink transmissions.
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