Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70727
Tipo: Artigo de Evento
Título : Monitoring diesel fuels with supervised distance preserving projections and local linear regression
Autor : Corona, Francesco
Zhu, Zhanxing
Souza Júnior, Amauri Holanda de
Mulas, Michela
Barreto, Guilherme de Alencar
Baratti, Roberto
Fecha de publicación : 2013
Editorial : Brazilian Congress on Computational Intelligence
Citación : BARRETO, G. A. et al. Monitoring diesel fuels with supervised distance preserving projections and local linear regression. In: BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE, 11., 2013, Ipojuca. Anais... Ipojuca: IEEE, 2013. p. 422-427.
Abstract: In this work, we discuss a recently proposed approach for supervised dimensionality reduction, the Supervised Distance Preserving Projection (SDPP) and, we investigate its applicability to monitoring material’s properties from spectroscopic observations using Local Linear Regression (LLR). An experimental evaluation is conducted to show the performance of the SDPP and LLR and compare it with a number of state-of-the-art approaches for unsupervised and supervised dimensionality reduction. For the task, the results obtained on a benchmark problem consisting of a set of NIR spectra of diesel fuels and six different chemico-physical properties of those fuels are discussed. Based on the experimental results, the SDPP leads to accurate and parsimonious projections that can be effectively used in the design of estimation models based on local linear regression.
URI : http://www.repositorio.ufc.br/handle/riufc/70727
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2013_eve_gabarreto.pdf1,61 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.