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Abstract—In this work, we discuss a recently proposed ap-
proach for supervised dimensionality reduction, the Supervised
Distance Preserving Projection (SDPP) and, we investigate its
applicability to monitoring material’s properties from spectro-
scopic observations using Local Linear Regression (LLR). An
experimental evaluation is conducted to show the performance of
the SDPP and LLR and compare it with a number of state-of-the-
art approaches for unsupervised and supervised dimensionality
reduction. For the task, the results obtained on a benchmark
problem consisting of a set of NIR spectra of diesel fuels and six
different chemico-physical properties of those fuels are discussed.
Based on the experimental results, the SDPP leads to accurate
and parsimonious projections that can be effectively used in the
design of estimation models based on local linear regression.

I. INTRODUCTION

Spectrophotograms are recognised sources of information
in a variety of fields ranging from analytical chemistry to
process industry. Many applications reported in the research
and industrial literature regard the estimation of important
quality indexes (typically, chemical and physical properties)
in a material from a collection of light absorbance spectra [1].

The information encoded in the spectra results from the
interaction between light and matter and it is observed as com-
plex curves conditioned by the composition of the analysed
samples. The composition, in turn, determines the property of
interest. Without specific methods of analysis, such informa-
tion is not easily accessible and, cannot be directly extracted
and used in estimation tasks. In fact, one intrinsic characteristic
of the measurements acquired by a spectrophotometer is that
the absorbance spectrum can be regarded as a regular function
observed at discretised arguments in the instrument’s operating
range of wavelengths. Because of such a distinctive feature,
the calibration problem of estimating the response output (the
property of interest) is defined from very high-dimensional and
collinear input covariates (the spectra). Furthermore, it is not
unusual to analyse datasets with a number of observations that
is radically smaller than the number of input covariates.

To address this ill-conditioned calibration problem, one

common regression approach is used in practice. The standard
solution is to rely on full-spectrum methods for linear dimen-
sionality reduction coupled with linear regression. Reference
models and de facto standard in multivariate calibration are the
well-known Principal Component Regression (PCR), which
performs Principal Component Analysis (PCA, [2]) followed
by Multiple Linear Regression (MLR), and Partial Least-
Squares Regression (PLSR), which combines Projection to
Latent Structures (PLS, [3]) and MLR. PCA is an unsu-
pervised dimensionality reduction method that learns a low-
dimensional input subspace by maximising the variance of the
covariates and PLS is a supervised method that constructs a
low-dimensional input subspace by maximising the covariance
between the projected covariates and the output. Following
the advances in dimensionality reduction, kernel extensions
like Kernel-PCA (KPCA, [4]) and Kernel-PLS (KPLS, [5])
have been developed and used to firstly perform a nonlinear
projection of the spectral data and then regress the output.

In this work, we discuss a recently proposed approach for
supervised dimensionality reduction, the Supervised Distance
Preserving Projection (SDPP, [6]). Specifically, we investigate
the applicability of the SDPP to the calibration problem
from spectroscopic observations when it is coupled with Lo-
cal Linear Regression (LLR, [7]). Motivated by continuity
preservation, the SDPP minimises the difference between
distances among projected covariates and distances among
responses, locally. The minimisation of distance differences
leads to the effect that the geometry of the input points in
the low-dimensional subspace mimics the geometry of the
corresponding points in the response space. LLR are ensembles
of regression models calibrated only on small subsets of
input observations in a neighbourhood which is similar to
the new inputs. Usually, the local regressors are simple linear
models like the aforementioned MLR. Similarity in LLR is
conventionally based on distance and, either on a fixed number
of nearest neighbours or on a varying number of neighbours
that adapt to the local topology of the data, as with convex
neighbourhoods like natural neighbours, natural neighbours
inclusive and enclosing k-nearest neighbours ([8], [9]). Local
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linear regressors are globally nonlinear, they can achieve high
accuracies and be updated to automatically include new points.

The remainder of this paper is organised as follows. Section
II overviews the SDPP and Section III presents LLR and
techniques for neighbourhood definition. In Section IV, an
experimental evaluation is conducted to show the performance
of the SDPP coupled with LLR and compare it with four
state-of-the-art approaches (PCA, PLS, KPCA and KPLS).
A benchmark problem from the Southwest Research Institute
consisting of a set of Near Infrared (NIR) spectra of diesel
fuels and six different properties of those fuels is discussed.

II. SUPERVISED DISTANCE PRESERVING PROJECTIONS

The Supervised Distance Preserving Projection (SDPP) is
a dimensionality reduction method based on simple geometric
intuitions on the assumed continuity of the mapping from the
covariates to the response space. The Weierstrass definition of
continuity of a function states that if two points are close in the
covariates space, then they are also close in the response space;
The SDPP is designed to find a low-dimensional subspace
where such a continuity is preserved. In the following, the
formulation of the SDPP and its optimisation is overviewed.

Formally, we are given n data points {x1,x2, . . . ,xn} ∈ Rd

and their corresponding responses {y1,y2, . . . ,yn} ∈ Rm, and
we assume the existence of a continuous mapping f : X 7→Y .
Provided that the input space X is well-sampled, we expect
that for each point x ∈ X and for every εy > 0 there ex-
ists an εx > 0 such that d(x,x′) < εx ⇒ δ ( f (x), f (x′)) < εy,
where d(·, ·) and δ (·, ·) are distance functions in X and Y ,
respectively. Under this condition, the Supervised Distance
Preserving Projection computes a low-dimensional subspace
Z of dimensionality r with r� d, where such a continuity
is preserved. The SDPP achieves this by matching the local
geometry of the data points in the Z and Y spaces. The
geometrical structure is expressed by pairwise distances over
neighbourhoods of the input covariates. Inside the neighbour-
hoods, the SDPP minimises the difference between distances
among projected covariates and distances among responses.

The Supervised Distance Preserving Projection assumes
that the subspace Z can be obtained by a linear transformation
of X ; that is, for an input point x, the new representation in the
subspace is z = WT x, where the projection matrix W ∈Rd×r.
Concretely, the SDPP seeks for a linear transformation W that
parameterises the input distances by minimising the criterion

J(W) =
1
n

n

∑
i=1

∑
x j∈Jxi

(d2
i j(W)−δ

2
i j)

2, (1)

where Jxi is a neighbourhood of xi. To characterise pairwise
distances, the conventional Euclidean metric is commonly
used; that is, d2

i j(W) = ‖zi− z j‖2 and δ 2
i j = ‖yi−y j‖2.

Figure 1 depicts the functioning of the SDPP, where, for
an input point x, three nearest neighbours {x1,x2,x3} are
considered and a transformation W that leads to a similar
geometry between the Z -space and the Y -space is found.
To match the local geometry of the Y -space, one of the three
nearest neighbours, x2, is moved, after projection, outside the
neighbourhood in the Z -space while another point is moved
inside. This match is beneficial to the regression from the

X − space Y − space

Z − space

y2

y1

y3

y

z
z1
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x y = f(x)
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Fig. 1. The SDPP: Solid lines denote connections between nearest neighbours.

subspace Z to the response space Y and to the visualisation
of the relationship existing between inputs and responses.

A. Optimisation of the SDPP

To optimise the objective function of the Supervised Dis-
tance Preserving Projection, two different strategies have been
designed: i) a Semidefinite Quadratic Linear Programming
(SQLP) problem and ii) a Conjugate-Gradient (CG) optimi-
sation. The two formulations are overviewed in the following.

SQLP: Starting from the square of the pairwise distances
d2

i j(W) = (xi−x j)
T WWT (xi−x j) = (xi−x j)

T P(xi−x j), with
P = WWT a positive semidefinite matrix P � 0, the optimi-
sation of SDPP can be formulated as an instance of convex
quadratic semidefinite programming (QSDP). After defining
τi j = xi−x j, the squared pairwise distances (parameterised by
W) are written as d2

i j(W) = τ T
i j Pτi j = vec(τi jτ

T
i j )

Tvec(P) =
lTi jp, where li j = vec(τi jτ

T
i j ) and p = vec(P). The vec(·)

operator concatenates the columns of a matrix into a vector.
Then, the objective can be re-written as a function of p,

J(p) = pT

(
1
n ∑

i j
Gi jli jlTi j

)
︸ ︷︷ ︸

A

p+

(
−2

n ∑
i j

Gi jδ
2
i jli j

)T

︸ ︷︷ ︸
b

p

+
1
n ∑

i j
Gi jδ

4
i j︸ ︷︷ ︸

c

= pT Ap+bT p+ c, (2)

where A ∈ Rd2×d2
,b ∈ Rd2×1, and c is a constant that can be

ignored later in the optimisation. Gi j denotes the neighbour-
hood graph of xi and it is defined in such a way that Gi j = 1,
if x j is a neighbour of xi, and Gi j = 0 otherwise.

The SDPP is optimised from the equivalent QSDP problem

min
p

pT Ap+bT p, s.t. P� 0. (3)

Notice that the QSDP formulation does not optimise the
projection matrix W directly, instead it optimises the PSD
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matrix P = WWT . The projection matrix W can be computed
either as the square root (Cholesky Decomposition) of P or,
alternatively, from a Singular Value Decomposition of P to
obtain an orthogonal matrix W.

Equation 3 can be written also as a semidefinite program-
ming (SDP) problem. In this case, the QSDP problem is
reformulated into a semidefinite quadratic linear programming
(SQLP) problem that conveniently requires O(d6.5) arithmetic
operations, whereas the SDP solution needs O(d9) operations.

Conjugate-Gradient optimisation: When the dimensional-
ity d is very high, the size of A in the SQLP formulation
becomes extremely large. The SQLP solution is therefore
feasible only for not very high-dimensional problems (e.g.
when d < 100). This aspect brings practical limitations related
to storing capacity and further optimisation. To overcome these
shortcomings, an alternative optimisation approach based on
the conjugate-gradient (CG) search has been formulated.

After denoting the (squared) pairwise distances as Di j =
d2

i j(W) and ∆i j = δ 2
i j, the objective function in Equation 1 is

J(W) =
1
n ∑

i j
Gi j(Di j−∆i j)

2 (4)

The gradient with respect to W is then equal to ∇WJ =
4/n∑i j Gi j(Di j −∆i j)τ i jτ

T
i jW. A more compact form of the

gradient can be obtained after denoting Q = G� (D−∆) with
� representing the element-wise product of two matrices, the
symmetric matrix R = Q+QT and S a diagonal matrix with
Sii = ∑ j Ri j. Straightforward algebraic manipulations lead to
∇WJ = 4

n XT (S−R)XW. Each row of X is a data point xi and
L = S−R is the Laplacian matrix.

Note that the CG approach allows for a direct optimisation
of the projection matrix W. In comparison to the SQLP
approach where the dimensionality of the projection subspace
is selected a posteriori, here it is defined beforehand.

III. LOCAL LINEAR REGRESSION

Local Linear Regression (LLR) is a nonlinear estimation
approach. The spirit of LLR is that, over a small subset of
the input domain, a simple MLR model can approximate
sufficiently well the true mapping to the output. LLR retains
the simplicity of MLR and it can overcome its low accuracy.

We are given n training points X → Y = {(x1,y1),
. . . ,(xn,yn)}, where xi ∈Rd and yi ∈R. For an arbitrary input
test point g ∈ Rd , LLR estimates its output as ŷ = β̂

T
g+ β̂0,

the least-squares hyperplane over the neighbourhood Jg of g:

(β̂ , β̂0) = argmin
β ,β0

∑
x j∈Jg

(yi−β
T g−β0)

2.

The definition of the neighbourhood and the number of neigh-
bours are crucial for local linear regression. In this section,
we briefly define and illustrate four major neighbourhood
definition strategies for LLR, from a geometrical point of view.

Classic k-nearest neighbours (kNN) define a neighbour-
hood J kNN

g of g using k of its neighbours, according to a
specified distance metric. Usually, the Euclidean metric is used
and the number of neighbours k is fixed or cross-validated.
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(a) k-nearest neighbours
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Fig. 2. Neighbourhoods: a) J kNN
g ={x1,x5,x6}, b) J NN

g ={x1,x2,x3,x5,x6},
c) J ekNN

g ={x1,x3,x5,x6,x8} and d) J NNi
g ={x1,x2,x3,x5,x6,x7,x8,x9}.

Figure 2(a) shows a kNN neighbourhood of size k = 3 for a test
point g. Despite its simplicity, one major problem in kNN is
the selection of the neighbourhood size: i) too few neighbours
may lead to a neighbourhood that does not enclose the test
point which might give a large estimation variance and, ii) too
many neighbours to impose enclosure may cause the model to
over-smooth. How to select adaptively k is an open issue.

A. Enclosing neighbourhoods

If Jg encloses g, we call it an enclosing neighbourhood;
i.e., g ∈ conv(Jg), where the convex hull of a point set
S={s1, . . . ,sn} is defined as conv(S)={∑n

i=1 ωisi|∑n
i=1 ωi =

1,ωi ≥ 0}. Recently, [8] proved that if a test point is in the
convex hull enclosing its neighbourhood, then the variance of
the local linear regression estimate is bounded by the variance
of the measurement noise. Such a property is fundamental to
limit erratic results. In the following, three enclosing neigh-
bourhood definition strategies are briefly overviewed.

Enclosing k-nearest neighbours (ekNN): It is based on the
kNNs of g and extends them to define a neighbourhood that
encloses it, Figure 2(c). ekNN is the neighbourhood of the
kNNs with the smallest k such that g ∈ conv(Jg(k)), where
Jg(k) is the set of kNNs of g [8]. If g is outside of convex hull
of the set X , no such k exists. Define distance to enclosure
as D(g,Jg) = minz∈conv(Jg) ‖g− z‖2, where z is any point
in the convex hull around the neighbourhood of g. Note
that D(g,Jg) = 0 only if g ∈ conv(Jg). Then, the ekNN
neighbourhood is Jg(k∗) with k∗ = mink{k|D(g,Jg(k)) =
D(g,X )}. The complexity for building a convex hull using
k neighbours is O(kbd/2c), where b·c is the floor function.
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Natural neighbours (NN): Natural neighbours are based
on the Voronoi tessellation of the training samples and the
test point. The natural neighbours of g are defined as those
points whose Voronoi cells are adjacent to the cell including
g. Natural neighbours have the so-called local coordinates
property, which is used to prove that the natural neighbours
form an enclosing neighbourhood if g ∈ conv(X ). Figure
2(b) shows an example of natural neighbours for the point g.

Natural neighbours inclusive (NNi): In some cases of non-
uniformly distributed local areas, a training point which is far
from the test point can be one of its natural neighbours, but a
nearer point is excluded for its neighbourhood. To overcome
this situation, natural neighbours inclusive has been proposed
to include both the natural neighbours and those training points
within the distance to the furthest natural neighbour. That is,
J NNi

g = {x j ∈ X |‖g− x j‖ ≤ maxxi∈J NN
g
‖g− xi‖}. Figure

2(d) is an example of natural neighbours inclusive.

IV. MONITORING DIESEL FUELS

In this section, we illustrate the effectiveness of Supervised
Distance Preserving Projections coupled with Local Linear
Regression based on neighbourhoods defined by k-nearest
neighbours (LLR-kNN), enclosing k-nearest neighbours (LLR-
ekNN), natural neighbours (LLR-NN) and natural neighbours
inclusive (LLR-NNi). The SDPP is then compared with four
state-of-the-art methods for unsupervised and supervised di-
mensionality reduction. For comparison, we considered Prin-
cipal Component Analysis, Partial Least Squares, Kernel Prin-
cipal Component Analysis and Kernel Partial Least Squares.

The application consists of estimating six different prop-
erties in summer diesel fuels starting from a set of spec-
tral observations. The absorbance spectra were acquired by
means of a spectrophotometer operating in the 900−1700nm
range, with a 2nm resolution. Each input observation con-
sists of the 401-channel spectrum of absorbances (xi ∈ Rd ,
with d = 401) and the corresponding outputs are the values
of six different chemico-physical properties (yi ∈ Rm, with
m = 6): I) Boiling point; II) Cetane number; III) Density; IV)
Freezing temperature; V) Total Aromatics; and, VI) Viscosity.
The measurements of the product’s properties were obtained
in laboratory by reference methods. The dataset consists of
n = 135 observations for learning the projection models and
the local linear regression models and 125 observations for
testing the results. The six outputs are modelled independently.

A. 2D projections and local linear regression

To get an insight on the spectra and their low-dimensional
arrangement with respect to the six properties, we firstly
projected the spectra (d = 401) onto a bi-dimensional subspace
(zi ∈ Rs, with s = 2) using PCA, KPCA, PLS, KPLS and
the SDPP. Subsequently, the local linear regression methods
were learned to regress the output responses onto the new
low-dimensional input spaces. The parameters of both, the
projection and the regression models, are estimated using train-
ing points only. The testing points were projected afterwards
with the out-of-sample formulations of the methods. The 2D
subspace was selected to support the presentation on easily
intelligible visual displays and, more importantly, to investi-
gate the possibility to develop very parsimonious regression

models afterwards. When kernel methods are used, Gaussian
kernels are employed, with the kernel width estimated by
cross-validation. As for the neighbourhood size in SDPP, the
heuristic to define locality to be equal to 10% of the available
data points is used (k = 0.1n). The same heuristic is also used
to define locality in LLR-kNN.

Figure 3 shows the bi-dimensional projections of the input
spectra using a colouring scheme that dyes the points according
to the corresponding values of the response, for each property
and method. From the figure, it is possible to notice how
the projections obtained with supervised methods (PLS and
KPLS) appear visually superior when compared to what is
obtained with unsupervised methods (PCA and KPCA), as
per their stronger ability to arrange the projected input points
on the basis of the response; an expected result. The bi-
dimensional subspaces learned by the SDPP are based on two
highly informative features that further emphasise this aspect
of the projections. This is particularly true for the boiling
point, the density, the total aromatics and the viscosity of
the fuel samples. For such properties, the input spectra are
arranged almost linearly, indicating that a mono-dimensional
projection would be sufficient for reconstructing the outputs.
For the cetane number and the freezing point, it seems that
also for the SDPP, projections onto more features are needed.

The qualitative assessment of the projections can be quan-
tified after recalling that when the dimensionality is reduced it
is not necessarily possible to preserve all the similarities. From
the point of view of LLR, the reduction causes a main kind of
error: Data point that are not neighbours in X can be mapped
close by in Z , causing points to be falsely identified as similar.
Such errors can be used to measure the trustworthiness of the
X →Z , which is defined by denoting with Ukr(i) the set of
points that are in kr-neighbourhood of zi in Z but not in X
and, with r(i, j) the rank of x j in the ordering based on its
distance from xi. Trustworthiness of X →Z is then

MX→Z
trust (kr) = 1−C(kr)

n

∑
i=1

∑
j∈Ukr (i)

(r(i, j)− kr)

The neighbourhood size kr is the amplitude of the region of
interest, the term C(kr) simply scales the measures in [0,1].
The upper row of plots in Figure 4 shows the trustworthiness
of the projections for kr ranging in the [2,64] interval. The
plots highlight how PCA and PLS are the best performers, with
trustworthiness monotonically increasing with the amplitude of
the region of interest. This is not surprising considering that
PCA can be understood as a method for globally preserving
pairwise distances and PLS is known to find features that
are often similar to the principal components. On the other
hand, their kernel extensions returned projections that are only
moderately faithful. Similar results are also obtained by the
SDPP, indicating that the apparent quality of the 2D displays
does not imply a preservation of similarities between spectra.

This result is expected because such criterion is not in
the SDPP’s objective; the SDPP aims at mapping inputs
characterised by similar outputs close by in the projection
space. For regression it is, in fact, more desirable that the
continuity of Z → Y is as high as possible. Such continuity
can be defined by letting Vkr(i) be now the points that are in
the kr neighbourhood in Z but not in Y and, by letting r(i, j)
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Fig. 3. Bi-dimensional projection and visualisation of the input spectra. Colouring based on output values is used to dye the inputs.

be the rank of y j in the ordering based on its distance from yi:

MZ→Y
cont (kr) = 1−C(kr)

n

∑
i=1

∑
j∈Vkr (i)

(r(i, j)− k),

Note that here kr and C(kr) bear the same meaning as before,
whereas k is the locality parameter of the SDPP. The lower
row of plots in Figure 4 shows the measure of continuity
for regression after the bi-dimensional projections achieved by
PCA, PLS, KPCA, KPLS and the SDPP. Again, a region of

interest kr ranging in the interval [2,64] is used. The diagrams
highlight how SDPP is consistently the best performer in rep-
resenting the continuity between the projected spectra and their
properties, for a wide amplitude of the region of interest. This
is also true for those outputs that appeared to require a higher
number of features to capture the input-output relationships.

The projection results suggest that, for all the responses,
simple linear regression models calibrated either globally or
locally over all the learning sample should be sufficient to
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Fig. 4. Trustworthiness of the X →Z projection and continuity for the Z → Y regression, for a region of interest kr ∈ [2,64].

estimate the fuel properties directly from the projected spectra.

TABLE I. TEST PERFORMANCE (RMSE).

Output Models SDPP PLS PCA KPLS KPCA

I

MLR 5.2e+0 1.0e+1 1.5e+1 1.3e+1 1.7e+1
LLR-kNN 5.2e+0 1.1e+1 1.4e+1 1.3e+1 3.1e+1
LLR-NN 5.2e+0 1.8e+1 1.7e+1 1.3e+1 3.8e+1

LLR-ekNN 1.2e+1 1.8e+1 9.7e+0 1.3e+1 8.2e+1
LLR-NNi 5.2e+0 9.7e+0 1.4e+1 1.3e+1 1.8e+1

II

MLR 4.0e+0 2.3e+0 2.3e+0 2.9e+0 3.5e+0
LLR-kNN 3.8e+0 2.4e+0 2.4e+0 2.8e+0 4.9e+0
LLR-NN 3.7e+0 2.6e+0 2.7e+0 2.8e+0 6.8e+0

LLR-ekNN 3.8e+0 2.7e+0 2.9e+0 2.8e+0 4.0e+0
LLR-NNi 3.8e+0 2.4e+0 2.5e+0 2.8e+0 3.8e+0

III

MLR 9.6e-4 5.1e-3 9.5e-3 7.1e-3 1.0e-2
LLR-kNN 9.6e-4 5.2e-3 9.6e-3 7.3e-3 2.8e-2
LLR-NN 9.6e-4 5.8e-3 9.5e-3 7.6e-3 1.7e-2

LLR-ekNN 9.6e-4 1.1e-2 2.0e-2 7.5e-3 1.2e-2
LLR-NNi 9.6e-4 5.3e-3 9.4e-3 7.4e-3 1.2e-2

IV

MLR 4.6e+0 3.6e+0 3.9e+0 3.4e+0 4.0e+0
LLR-kNN 4.6e+0 4.1e+0 4.3e+0 3.5e+0 5.5e+0
LLR-NN 4.6e+0 1.0e+1 5.1e+0 3.5e+0 5.2e+0

LLR-ekNN 4.6e+0 4.8e+0 4.2e+0 3.5e+0 4.8e+0
LLR-NNi 4.6e+0 4.0e+0 4.3e+0 3.5e+0 4.5e+0

V

MLR 7.9e-1 1.9e+0 2.3e+0 3.7e+0 5.7e+0
LLR-kNN 7.7e-1 1.9e+0 2.8e+0 3.8e+0 8.2e+0
LLR-NN 7.7e-1 2.1e+0 3.0e+0 3.7e+0 1.2e+1

LLR-ekNN 7.8e-1 8.2e+0 2.3e+0 3.7e+0 8.2e+0
LLR-NNi 7.7e-1 2.0e+0 2.6e+0 3.7e+0 6.0e+0

VI

MLR 1.4e-1 2.4e-1 3.9e-1 2.8e-1 3.9e-1
LLR-kNN 1.4e-1 2.5e-1 4.1e-1 2.8e-1 1.6e+0
LLR-NN 1.4e-1 2.6e-1 4.5e-1 2.8e-1 4.4e+0

LLR-ekNN 1.4e-1 4.4e-1 2.6e-1 2.8e-1 7.1e-1
LLR-NNi 1.4e-1 2.5e-1 4.2e-1 2.8e-1 5.5e-1

This was quantitatively verified after evaluating the accu-
racy of the MLR and the LLR-kNN, LLR-NN, LLR-ekNN
and LLR-NNi models calibrated from all the obtained 2D-
projections and, for each of the six outputs. The RMSE
(Root Mean Square Error) results are reported in Table I. As
expected, the SDPP nearly always leads to the smallest test
errors, when both global MLR models and LLR models are
considered. In that respect, it is important to notice that the
accuracies achieved by MLR are already comparable with the
accuracy of the analytical measurements. The improvements
obtained by LLR although expected are thus very often negli-

gible and of marginal importance in real-world applications.

V. CONCLUSIONS

The Supervised Distance Preserving Projection is a su-
pervised dimensionality reduction method designed to project
high-dimensional inputs onto a low-dimensional subspace
where the geometry of the input points mimics the geometry
of the output points. Such type of projection is desirable for
designing parsimonious and yet accurate regression models
from very high-dimensional and possibly correlated inputs
in small sample problems, as those typically encountered in
chemometrics. In this work, the applicability of the SDPP
coupled with Local Linear Regression under these ill-posed
regression conditions is investigated for a set of diesel fuels. On
the basis of the experimental results, we found that the SDPP
can generate informative and yet parsimonious projections
finalised to the design of efficient calibration models.
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