Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70727
Tipo: Artigo de Evento
Título: Monitoring diesel fuels with supervised distance preserving projections and local linear regression
Autor(es): Corona, Francesco
Zhu, Zhanxing
Souza Júnior, Amauri Holanda de
Mulas, Michela
Barreto, Guilherme de Alencar
Baratti, Roberto
Data do documento: 2013
Instituição/Editor/Publicador: Brazilian Congress on Computational Intelligence
Citação: BARRETO, G. A. et al. Monitoring diesel fuels with supervised distance preserving projections and local linear regression. In: BRAZILIAN CONGRESS ON COMPUTATIONAL INTELLIGENCE, 11., 2013, Ipojuca. Anais... Ipojuca: IEEE, 2013. p. 422-427.
Abstract: In this work, we discuss a recently proposed approach for supervised dimensionality reduction, the Supervised Distance Preserving Projection (SDPP) and, we investigate its applicability to monitoring material’s properties from spectroscopic observations using Local Linear Regression (LLR). An experimental evaluation is conducted to show the performance of the SDPP and LLR and compare it with a number of state-of-the-art approaches for unsupervised and supervised dimensionality reduction. For the task, the results obtained on a benchmark problem consisting of a set of NIR spectra of diesel fuels and six different chemico-physical properties of those fuels are discussed. Based on the experimental results, the SDPP leads to accurate and parsimonious projections that can be effectively used in the design of estimation models based on local linear regression.
URI: http://www.repositorio.ufc.br/handle/riufc/70727
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_eve_gabarreto.pdf1,61 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.