Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70722
Tipo: Artigo de Evento
Título : Novel algorithms for nonlinear channel equalization using neural vector quantization
Autor : Souza, Luís Gustavo Mota
Barreto, Guilherme de Alencar
Mota, João César Moura
Palabras clave : Self-organizing maps;Vector quantization;Radial basis functions;Channel equalization
Fecha de publicación : 2005
Editorial : Simpósio Brasileiro de Telecomunicações
Citación : SOUZA, L .G. M.; BARRETO, G. A.; MOTA, J. C. M. Novel algorithms for nonlinear channel equalization using neural vector quantization. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 22., 2005, Campinas. Anais... Campinas, 2005. p. 1-6.
Abstract: In this paper we use the Self-Organizing Map (SOM), a well-known neural vector quantization algorithm, to design nonlinear adaptive filters through the Vector-Quantized Temporal Associative Memory (VQTAM) method. In VQTAM, the centroids (codebook vectors) of input clusters found by the SOM are associated with codebook vectors of output clusters, so that the SOM can learn dynamic input-output mappings in a very simple and effective way. In addition, we also propose two VQTAM-based Radial Basis Function (RBF) adaptive filters. Firstly, a global RBF model is built using all the input codebook vectors as centers of M gaussian basis functions, while the hidden-to-output layer weights are given by the output prototypes. Then, a local RBF model is built in a similar fashion, but using only K << M neurons. We evaluate the proposed VQTAM-based adaptive filters in a nonlinear channel equalization task. Performance comparisons with the standard linear FIR/LMS and the nonlinear Multilayer Perceptron (MLP) equalizers are also carried out.
URI : http://www.repositorio.ufc.br/handle/riufc/70722
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2005_eve_gabarreto.pdf167,9 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.