Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70722
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza, Luís Gustavo Mota-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.contributor.authorMota, João César Moura-
dc.date.accessioned2023-02-09T17:17:09Z-
dc.date.available2023-02-09T17:17:09Z-
dc.date.issued2005-
dc.identifier.citationSOUZA, L .G. M.; BARRETO, G. A.; MOTA, J. C. M. Novel algorithms for nonlinear channel equalization using neural vector quantization. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES, 22., 2005, Campinas. Anais... Campinas, 2005. p. 1-6.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70722-
dc.description.abstractIn this paper we use the Self-Organizing Map (SOM), a well-known neural vector quantization algorithm, to design nonlinear adaptive filters through the Vector-Quantized Temporal Associative Memory (VQTAM) method. In VQTAM, the centroids (codebook vectors) of input clusters found by the SOM are associated with codebook vectors of output clusters, so that the SOM can learn dynamic input-output mappings in a very simple and effective way. In addition, we also propose two VQTAM-based Radial Basis Function (RBF) adaptive filters. Firstly, a global RBF model is built using all the input codebook vectors as centers of M gaussian basis functions, while the hidden-to-output layer weights are given by the output prototypes. Then, a local RBF model is built in a similar fashion, but using only K << M neurons. We evaluate the proposed VQTAM-based adaptive filters in a nonlinear channel equalization task. Performance comparisons with the standard linear FIR/LMS and the nonlinear Multilayer Perceptron (MLP) equalizers are also carried out.pt_BR
dc.language.isoenpt_BR
dc.publisherSimpósio Brasileiro de Telecomunicaçõespt_BR
dc.subjectSelf-organizing mapspt_BR
dc.subjectVector quantizationpt_BR
dc.subjectRadial basis functionspt_BR
dc.subjectChannel equalizationpt_BR
dc.titleNovel algorithms for nonlinear channel equalization using neural vector quantizationpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2005_eve_gabarreto.pdf167,9 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.