Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70719
Tipo: Artigo de Evento
Título : Forward stagewise regression on incomplete datasets
Autor : Veras, Marcelo Bruno de Almeida
Mesquita, Diego Parente Paiva
Gomes, João Paulo Pordeus
Souza Júnior, Amauri Holanda de
Barreto, Guilherme de Alencar
Fecha de publicación : 2017
Editorial : International Work-Conference on Artificial Neural Networks
Citación : BARRETO, G. A. et al. Forward stagewise regression on incomplete datasets. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 14., 2017, Cádis. Anais... Cádis: Springer, 2017. p. 1-10.
Abstract: The Forward Stagewise Regression (FSR) algorithm is a popular procedure to generate sparse linear regression models. However, the standard FSR assumes that the data are fully observed. This assumption is often flawed and pre-processing steps are applied to the dataset so that FSR can be used. In this paper, we extend the FSR algorithm to directly handle datasets with partially observed feature vectors, dismissing the need for the data to be pre-processed. Experiments were carried out on real-world datasets and the proposed method reported promising results when compared to the usual strategies for handling incomplete data.
URI : http://www.repositorio.ufc.br/handle/riufc/70719
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2017_eve_gabarreto.pdf252,86 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.