Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70719
Tipo: | Artigo de Evento |
Título : | Forward stagewise regression on incomplete datasets |
Autor : | Veras, Marcelo Bruno de Almeida Mesquita, Diego Parente Paiva Gomes, João Paulo Pordeus Souza Júnior, Amauri Holanda de Barreto, Guilherme de Alencar |
Fecha de publicación : | 2017 |
Editorial : | International Work-Conference on Artificial Neural Networks |
Citación : | BARRETO, G. A. et al. Forward stagewise regression on incomplete datasets. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 14., 2017, Cádis. Anais... Cádis: Springer, 2017. p. 1-10. |
Abstract: | The Forward Stagewise Regression (FSR) algorithm is a popular procedure to generate sparse linear regression models. However, the standard FSR assumes that the data are fully observed. This assumption is often flawed and pre-processing steps are applied to the dataset so that FSR can be used. In this paper, we extend the FSR algorithm to directly handle datasets with partially observed feature vectors, dismissing the need for the data to be pre-processed. Experiments were carried out on real-world datasets and the proposed method reported promising results when compared to the usual strategies for handling incomplete data. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70719 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2017_eve_gabarreto.pdf | 252,86 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.