Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70719
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorVeras, Marcelo Bruno de Almeida-
dc.contributor.authorMesquita, Diego Parente Paiva-
dc.contributor.authorGomes, João Paulo Pordeus-
dc.contributor.authorSouza Júnior, Amauri Holanda de-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.date.accessioned2023-02-09T17:12:58Z-
dc.date.available2023-02-09T17:12:58Z-
dc.date.issued2017-
dc.identifier.citationBARRETO, G. A. et al. Forward stagewise regression on incomplete datasets. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 14., 2017, Cádis. Anais... Cádis: Springer, 2017. p. 1-10.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70719-
dc.description.abstractThe Forward Stagewise Regression (FSR) algorithm is a popular procedure to generate sparse linear regression models. However, the standard FSR assumes that the data are fully observed. This assumption is often flawed and pre-processing steps are applied to the dataset so that FSR can be used. In this paper, we extend the FSR algorithm to directly handle datasets with partially observed feature vectors, dismissing the need for the data to be pre-processed. Experiments were carried out on real-world datasets and the proposed method reported promising results when compared to the usual strategies for handling incomplete data.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Work-Conference on Artificial Neural Networkspt_BR
dc.titleForward stagewise regression on incomplete datasetspt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2017_eve_gabarreto.pdf252,86 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.