Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70719
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Veras, Marcelo Bruno de Almeida | - |
dc.contributor.author | Mesquita, Diego Parente Paiva | - |
dc.contributor.author | Gomes, João Paulo Pordeus | - |
dc.contributor.author | Souza Júnior, Amauri Holanda de | - |
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.date.accessioned | 2023-02-09T17:12:58Z | - |
dc.date.available | 2023-02-09T17:12:58Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | BARRETO, G. A. et al. Forward stagewise regression on incomplete datasets. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 14., 2017, Cádis. Anais... Cádis: Springer, 2017. p. 1-10. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70719 | - |
dc.description.abstract | The Forward Stagewise Regression (FSR) algorithm is a popular procedure to generate sparse linear regression models. However, the standard FSR assumes that the data are fully observed. This assumption is often flawed and pre-processing steps are applied to the dataset so that FSR can be used. In this paper, we extend the FSR algorithm to directly handle datasets with partially observed feature vectors, dismissing the need for the data to be pre-processed. Experiments were carried out on real-world datasets and the proposed method reported promising results when compared to the usual strategies for handling incomplete data. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Work-Conference on Artificial Neural Networks | pt_BR |
dc.title | Forward stagewise regression on incomplete datasets | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2017_eve_gabarreto.pdf | 252,86 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.