Por favor, use este identificador para citar o enlazar este ítem:
http://repositorio.ufc.br/handle/riufc/70716
Tipo: | Artigo de Evento |
Título : | Randomized neural networks for recursive system identification in the presence of outliers: a performance comparison |
Autor : | Mattos, César Lincoln Cavalcante Barreto, Guilherme de Alencar Acuña, Gonzalo |
Palabras clave : | Randomized SLFNs;Online system identification;NARX model;Outliers |
Fecha de publicación : | 2017 |
Editorial : | International Work-Conference on Artificial Neural Networks |
Citación : | MATTOS, C. L. C; BARRETO, G. A.; ACUÑA, G. Randomized neural networks for recursive system identification in the presence of outliers: a performance comparison. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 14., 2017, Cádis. Anais... Cádis: Springer, 2017. p. 1-12. |
Abstract: | In this paper, randomized single-hidden layer feedforward networks (SLFNs) are extended to handle outliers sequentially in online system identification tasks involving large-scale datasets. Starting from the description of the original batch learning algorithms of the evaluated randomized SLFNs, we discuss how these neural architectures can be easily adapted to cope with sequential data by means of the famed least mean squares (LMS). In addition, a robust variant of this rule, known as the least mean M -estimate (LMM) rule, is used to cope with outliers. Comprehensive performance comparison on benchmarking datasets are carried out in order to assess the validity of the proposed methodology. |
URI : | http://www.repositorio.ufc.br/handle/riufc/70716 |
Aparece en las colecciones: | DETE - Trabalhos apresentados em eventos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
2017_eve_gabarreto.pdf | 552,78 kB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.