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Abstract. In this paper, randomized single-hidden layer feedforward
networks (SLFNs) are extended to handle outliers sequentially in online
system identification tasks involving large-scale datasets. Starting from
the description of the original batch learning algorithms of the evaluated
randomized SLFNs, we discuss how these neural architectures can be
easily adapted to cope with sequential data by means of the famed least
mean squares (LMS). In addition, a robust variant of this rule, known
as the least mean M-estimate (LMM) rule, is used to cope with outliers.
Comprehensive performance comparison on benchmarking datasets are
carried out in order to assess the validity of the proposed methodology.

Keywords: Randomized SLFNs, Online System Identification, NARX
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1 Introduction

A novel class of supervised single-layer feedforward network (SLFN) architec-
tures, generically called Randomized SLFNs, is attracting a great deal of atten-
tion from the computational intelligence community in recent years. A few exam-
ples of such architectures are the Random Vector Functional Link (RVFL) [15],
the Extreme Learning Machine (ELM) [3], and the No-Prop network [14]. All this
interest seems to be primarily motivated by the very fast way they are trained,
without resorting to a long learning process across several training epochs, as
required by the backpropagation algorithm. Even being a valid argument, many
real-world applications present challenging features that demand adaptations in
the learning algorithms of the aforementioned randomized SLFNs. One of such
applications is online dynamical system identification from large scale datasets
in the presence of outliers.
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Dynamical system identification is a regression-like problem where the input
and output observations come from time series data [1]. In other words, informa-
tion about the dynamics (i.e. temporal behavior) of the system of interest must
be learned from time series data. Despite the rapidly growing number of suc-
cessful applications of randomized SLFNs in pattern recognition and regression,
their use for nonlinear dynamical system identification has not been fully ex-
plored yet, with just a few works available [5, 12, 9]. In [5] and [12], for example,
the proposed ELM-like models use batch learning algorithms based on the ordi-
nary least-squares (OLS) estimation method, which cannot be applied to large
scale datasets because it requires a costly matrix inversion and storage of huge
data matrices. In [9], a recursive estimation algorithm is proposed aiming at on-
line system identification problems, but despite alleviating the memory storage
requirements by using chunks of data samples instead of the whole dataset, the
proposed method is still too costly to be applied for large scale datasets.

In what concerns the robustness to outliers, it is widely known that the
OLS method is very sensitive to their presence in the estimation data [4]. As a
consequence, any randomized SLFN using the OLS method, such as the standard
RVFL and ELM networks, will also present a severe degradation in performance
when trained with outlier-contaminated data. For online learning in outlier-
free scenarios, the No-Prop network [14] becomes a suitable alternative to the
standard RVFL and ELM networks because it uses the least mean squares (LMS)
rule instead of the OLS method for estimating the output weights. However, like
the batch OLS, the adaptive LMS rule is also very sensitive to outliers, an issue
that can be resolved by means of an outlier-robust version of it, named the
least-mean M -estimate (LMM) algorithm [17].

From the exposed, due to the requirements of the applications we are inter-
ested in, we pursue randomized nonlinear models capable of fast online learning
in large scale datasets AND in the presence of outliers. For this purpose, we in-
corporate into the aforementioned randomized SLFNs, the robust online learning
ability of the LMM rule. This strategy is comprehensively evaluated on datasets
generated by several benchmarking dynamical systems and shown to be effec-
tive. For the sake of completeness, we also introduce the LMM learning rule into
the standard backpropagation algorithm in order to carry out a fair performance
comparison.

The remainder of the paper are organized as follows. In Section 2 we describe
all models to be evaluated in this paper, emphasizing the need for adaptive
learning rules, such as the LMS rule, for online system identification. In Section 3
we show how to replace the original LMS rule with a robust variant by means
of concepts from the M -estimation framework. A comprehensive performance
comparison is presented in Section 4. The paper is concluded in Section 5.

2 Evaluated Models

Let us assume that we have already collected N data pairs {(xn, dn)}Nn=1 for
building and evaluating the model, where xn ∈ Rp is the n-th p-dimensional
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input pattern and dn ∈ R is the corresponding target value. Then, let us ran-
domly select N1 (N1 < N) training input-output pairs from the available data
pool and arrange the input vectors along the columns of the matrix X (p×N1),
while the target values are stacked into the column-vector d (N1 × 1):

X = [x1 | x2 | · · · | xN1 ] and d = [d1 d2 · · · dN1 ]T , (1)

where the superscript T denotes the transpose of a vector/matrix.

2.1 The Random Vector Functional Link Network (RVFL)

The RVFL [15, 16] is a randomized SLFN with two pathways for processing
information from input units to output neurons. These pathways are then added
to form the network’s output. The first pathway is a linear one, which directly
connects the input units to the output neuron. Mathematically, we get

y(1)n = wT
1 xn, (2)

where w1 ∈ Rp is the corresponding weight vector1. The second pathway pro-
cesses the input vectors through a hidden layer of q (q ≥ 1) nonlinear neurons;
that is,

y(2)n = wT
2 hn, (3)

where w2 ∈ Rq is the corresponding weight vector and hn ∈ Rq is the hidden
activation vector, i.e. the vector containing the outputs of the hidden neurons in
response to the current input vector xn. The vector hn is computed as

hn = φ(Mxn) = [φ(mT
1 xn + b1), . . . , φ(mT

q xn + bq)]
T , (4)

where φ(·) is a nonlinear (e.g. sigmoidal) activation function operating at each
component of its argument vector, M is a q×p weight matrix, and bj , j = 1, .., q,
denotes the bias of the j-th hidden neuron. It should be noted that the weight
vectors w1 and w2 are estimated from data, while the entries of the matrix
M and the biases bj are randomly sampled either from a uniform or a normal
distribution.

If we add the outputs of both pathways, we get

yn = y(1)n + y(2)n = wT
1 xn + wT

2 hn = [wT
1 | wT

2 ]

xn−
hn

 = wT zn, (5)

where w = [wT
1 | wT

2 ]T is the (p+ q)×1 vector obtained from the concatenation
of the weight vectors w1 and w2. By the same token, zn is the (p+ q)× 1 vector
formed from the concatenation of the current input vector xn and the current
hidden activation vector hn.

1 We assume that all vectors are column-vectors, unless stated otherwise.
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The weight vector w can be readily estimated via the ordinary least squares
(OLS) method by means of the following expression:

w = (ZZT )−1Zd, (6)

where Z = [z1 | z2 | · · · | zN1
] is a (p+ q)×N1 matrix whose N1 columns are the

augmented vectors zn = [xTn | hTn ]T ∈ Rp+q, n = 1, . . . , N1, where N1 is the
number of available training input patterns. The vector d is defined in Eq. (1).
To avoid numerical problems, a regularized version of Eq. (6) is commonly used,
which is given by

w = (ZZT + λI)−1Zd, (7)

where the constant λ > 0 is the regularization parameter.

2.2 The Extreme Learning Machine (ELM)

The ELM network is a recent randomized SLFN introduced by Huang et al. [3],
whose weights from the inputs to the hidden neurons are randomly chosen, while
only the weights from the hidden neurons to the output are analytically deter-
mined. Consequently, ELM offers significant advantages such as fast learning
speed, ease of implementation, and less human intervention when compared to
more traditional SLFNs, such as the Multilayer Perceptrons (MLP) and RBF
networks.

From an architectural point of view, the ELM network can be understood
as a simplified version of the RVFL in which the direct linear path is removed.
Thus, the equations of the ELM are easily obtained as follows:

Output computation: From Eq. (5), once we remove the direct linear path-
way, we get

yn = y(2)n = wT
2 hn, (8)

where hn is defined as in Eq. (4).
Estimation of w2: In this case, the expression of the OLS estimate in Eq. (6)

reduces to
w2 = (HHT )−1Hd, (9)

where H = [h1 |h2 | · · · |hN1
] be a q×N1 matrix whose N1 columns are the

hidden activation vectors hn ∈ Rq, n = 1, . . . , N1, where N1 is the number
of available training input patterns.

2.3 Sequential Learning Rules for RVFL and ELM

In some applications, such as adaptive channel equalization and online system
identification, adaptive learning rules are a better option, where the weight vector
w is updated following the arrival of each input pattern. The input pattern
is then discarded after being used for updating the parameters. One of such
sequential learning rules is the well-known least mean squares (LMS) algorithm,
also known as the Widrow-Hoff or Delta rule, which was used recently by Widrow
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at al. [14] to introduce a randomized SLFN architecture, named No-Propagation
(No-Prop) network. Basically, the No-Prop network is like an ELM network with
output weights computed by means of a sequential learning rule.

In order to allow the RVFL network to process sequential data, we replace
the standard OLS equation with the LMS rule. For this purpose, let us consider
first the instantaneous cost function associated with the output neuron at the
presentation of the n-th input vector:

J (wn) =
1

2
e2n =

1

2
(dn − yn)2 =

1

2

(
dn −wT

nhn
)2
, (10)

where wn ∈ Rp+q is the weight vector of the output neuron at iteration n, and
en = dn − yn is the instantaneous error of that neuron at iteration n. Then, in
order to derive the LMS learning rule, we resort to a stochastic gradient descent
recursive formula given by

wn+1 = wn − η
∂J (wn)

∂wn
= wn + ηenhn = wn + η(dn − yn)hn, (11)

where 0 < η � 1 is the learning rate. A widely used variant of the LMS rule,
known as the normalized LMS (NLMS) algorithm [2], is given by

wn+1 = wn +
η

ε+ ‖hn‖2
enhn = wn +

η

ε+ hTnhn
enhn, (12)

where ε is a very small positive constant needed to avoid division by zero. The
strong points of the LMS and NLMS algorithms are ease of implementation
and optimal performance under important practical conditions [13]. For these
reasons, the LMS algorithm has enjoyed very widespread application in adaptive
filtering and signal processing applications. For instance, it is used in almost
every modem for channel equalization and echo canceling.

3 A Robust Learning Rule for RVFL and ELM

An important feature of both OLS and LMS rules is that they are derived from
cost functions that assign the same importance to all error samples, i.e. all errors
contribute the same way to the final solution. Hence, outliers tend to produce
large errors and then degrade the parameter estimation process.

Bearing this in mind, a robust variant of the LMS rule, named the Least
Mean M -Estimate (LMM) algorithm [17], has been introduced for the purpose
of better dealing with outliers. The theory behind the LMM rule is provided
by an elegant and principled estimation framework, known as M -estimation,
introduced by Huber [4]. The letter M stands for “maximum likelihood” type,
where robustness is achieved by minimizing a function distinct from the sum of
the squared errors.

Based on Huber’s theory, the instantaneous cost function to be minimized
by the output neuron is now given by

J (wn) = ρ(en) = ρ(dn − yn) = ρ
(
dn −wT

nhn
)
, (13)
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where wn ∈ Rp+q is the weight vector of the output neuron at iteration n, and
en = dn−yn is the instantaneous error of that neuron at iteration n. The function
ρ(·) should possess the following properties: (i) ρ(en) ≥ 0; (ii) ρ(0) = 0; (iii)
ρ(en) = ρ(−en); and, (iv) ρ(en) ≥ ρ(en′), for |en| > |en′ |. For ρ(en) = e2n/2, we
get the instantaneous cost function of the standard LMS rule shown in Eq. (10).

Thus, we develop a robust learning rule for the RVFL network as follows:

wn+1 = wn − η
∂J (wn)

∂wn
= wn − η

∂ρ(en)

∂wn
= wn − η

∂ρ(en)

∂en

∂en
∂wn

= wn − η
∂ρ(en)

∂en
(−hn) = wn + ηq(en)enhn, (14)

where q(en) = 1
en

∂ρ(en)
∂en

is called the weighting function. The normalized version
of the LMM rule is then written as

wn+1 = wn +
η

ε+ hTnhn
q(en)enhn, (15)

where ε has the same meaning as in Eq. (12). Note that if ρ(en) = e2n/2, then
q(en) = 1, and Eq. (14) reduces to Eq. (11)

In this work, Hampel’s three-part function [8] will be used, being defined as

ρ(en) =


e2n/2, 0 ≤ |en| < ξ
ξ|en| − ξ2/2, ξ ≤ |en| < ∆1
ξ
2 (∆1 +∆2)− ξ2

2 + ξ
2
(|en|−∆2)

2

∆1−∆2
, ∆1 ≤ |en| < ∆2

ξ
2 (∆1 +∆2)− ξ2

2 , ∆2 ≤ |en|

, (16)

q(en) =


1, 0 ≤ |en| < ξ
ξ
en

sign(en), ξ ≤ |en| < ∆1
ξ
en

sign(en) |en|−∆2

∆1−∆2
, ∆1 ≤ |en| < ∆2

0, ∆2 ≤ |en|

, (17)

where ξ,∆1, ∆2 are user-defined thresholds which avoid the influence of inputs
with large errors. As in [17], we use ξ = 1.96σ̂n, ∆1 = 2.24σ̂n and ∆2 = 2.576σ̂n,
where σ̂n is the standard deviation of the output, estimated recursively.

4 Simulation and Results

In this section we report the results of the evaluation of four randomized SLFNs,
namely: two variants of the RVFL network, named the RVFL-NLMS and the
RVFL-NLMM, and two variants of the ELM network, named the ELM-NLMS
and ELM-NLMM2. We also evaluate the performances of two variants of a single-
hidden-layered MLP network trained with the backprop algorithm, using the
tanh activation function for the hidden neurons and a linear activation function

2 The second term in the name of the evaluated randomized SLFN denotes the online
learning rule used to estimate the output weights.
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for the output neuron. The variants of the MLP network differ in the way the
weights of the output neuron are adjusted, with one using the LMS rule (MLP-
LMS) and the other using the LMM rule (MLP-LMM).

The dynamics of the systems of interest are assumed to be described by a
nonlinear autoregressive model with exogenous inputs (NARX) [1]:

dn = f(dn−1, · · · dn−Ly
, un−1, · · · , un−Lu

), (18)

where Lu and Ly denote the input and output memory orders, respectively. The
target function f(·) : RLy+Lu → R is unknown and assumed to be nonlinear.
Observed data, in the form of an input times series {un} and an output time

series {dn}Nn=1, are used to build an approximating model f̂(·) for f(·).
Experiments were performed with an artificial and a real-world dataset. The

Artificial dataset is generated by simulating the following dynamical system [7]:

dn =
dn−1

1 + d2n−1
+ u3n−1, (19)

where the training input time series is generated by sampling from an uniform
distribution between −2 and 2 (i.e. un ∼ U(−2, 2)), n = 1, . . . , 10000, and the
test input time series is given by un = sin(2πi/25) + sin(2πi/10), n = 1, . . . , 100.
To the resulting output time series {dn}, we add zero-mean Gaussian noise with
variance equal to 0.65. We use Ly = 1 and Lu = 1.

The real-world dataset, named Silver box [10, 6], is an electronic nonlinear
feedback laboratory experiment, which simulates a second order mechanical sys-
tem with a nonlinear spring constant, acting as mass-spring-damper structure.
The control input in the mechanical system is the force applied to the mass and
its displacement is the output. The electrical circuit is excited with ten different
realizations of odd random phase multisine, resulting in 91072 training samples.
The test set contains 40000 samples generated with a filtered Gaussian sequence
with increasing variance. The regressors’ lags are fixed as Ly = 10 and Lu = 10.

For all the following experiments, time series data are normalized to zero
mean and unit variance. All neural models were implemented from scratch using
the R software, version 3.3.2, running on Ubuntu 16.04, installed in an Acer
notebook, Core i7, 2.40GHz, 16GB RAM. We perform experiments with scenar-
ios containing 0%, 5%, 10%, 15%, 20%, 25% and 30% of outliers. The outliers
were sampled from σ(d) × T (0, 2), where σ(d) is the standard deviation of the
original training set and T (0, 2) is a Student-t distribution with zero mean and
2 degrees of freedom.

The models are trained in an online way, where the training samples are
presented as they are made available, one after another, within a single full pass
of the training data. The figure of merit of the evaluation is the root mean
square error (RMSE) values for both one-step ahead (OSA) prediction, where
predictions are made using the actual output samples in the regressors:

yn = d̂n = f̂(dn−1, · · · dn−Ly
, un−1, · · · , un−Lu

), (20)
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and free simulation, where predicted output values are fed back in order to build
the output regressor:

yn = d̂n = f̂(yn−1, · · · yn−Ly , un−1, · · · , un−Lu),

= f̂(d̂n−1, · · · d̂n−Ly , un−1, · · · , un−Lu), (21)

where the “hat” symbol ∧ denotes the predicted values.
For each model the number of hidden units and the learning rate were opti-

mized via Bayesian optimization [11] using the mean prediction RMSE within
the 10-fold cross-validation performed in the outlier-free training data. We apply
a linearly decaying learning rate, i.e., the rate for the n-th iteration is given by
αn = α1 + (αN1

− α1) n−1
N1−1 , where N1 is the number of training samples. Only

the final learning rate αN1
is optimized, while its initial value α1 was fixed after

preliminary experiments. In Table 1 we summarize the hyperparameters selected
for each model. We emphasize that the hyperparameters selection step was ex-
ecuted only once per dataset using outlier-free data, but the adjustment of the
models’ parameters was performed separately in each contaminated scenario.

Table 1. Hyperparameters selected for each evaluated model: the number of hidden
units q, the initial learning rate α1 and the final learning rate αN1 . α1 was fixed after
preliminary experiments. The other hyperparameters were determined via Bayesian
optimization of the 10-fold cross-validation error in the outlier-free data.

Artificial Silver box

q α1 αN1 q α1 αN1

ELM-NLMS 967 1 2.52e-02 981 1 3.14e-05
ELM-NLMM 946 1 3.30e-02 997 1 7.20e-03
RVFL-NLMS 101 1 2.19e-03 708 1 3.91e-04
RVFL-NLMM 319 1 1.60e-03 672 1 2.84e-02
MLP-LMS 35 0.1 3.09e-03 31 0.01 9.98e-03
MLP-LMM 41 0.1 2.11e-03 43 0.01 9.88e-03

From this table, one can easily note that the RVFL variants require much
smaller numbers of hidden neurons than the ELM variants. A possible explana-

tion could rely on the direct linear pathway (y
(1)
n ), which by capturing the linear

part of the system dynamics let only the nonlinear (and more difficult) part of

the dynamics to the nonlinear pathway (y
(2)
n ).

The obtained RMSE values and the corresponding variances for the models
using the Artificial dataset are shown in Fig. 1. Fig. 1.a stems for the stan-
dard algorithms in OSA predictions while Fig. 1.b shows mutiple-step-ahead
predictions (free simulation). The performances of the robust versions of the
algorithms are shown in Figs. 1.c (OSA) and 1.d (free simulations). For both
kinds of prediction, results are rather consistent and show that no matter the
% of contamination by outliers robust algorithms achieve better performances
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a) Standard models - OSA prediction. b) Standard models - free simulation.

c) Robust models - OSA prediction. d) Robust models - free simulation.

Fig. 1. Results for the Artificial dataset.

and are rather insensitive to the % of contamination. This is not the case for
the standard algorithms that exhibit a certain degree of sensitivity to the % of
outliers. In both kinds of prediction MLP-LMS show great variance for some of
the % of contamination by outliers and in both cases the introduction of the
corresponding robust algorithm greatly reduces these poor performances. In the
case of robust algorithms, ELM-NLMM exhibits the best performance followed
by RVFL-NLMM and MLP-LMM. There are no great differences in the cor-
responding performances of standard and robust algorithms depending on the
kind of prediction (OSA or free simulation), except for the case of MLP-LMS.

Things are different for the Silver box dataset results shown in Fig. 2. In this
case robust algorithms (Figs. 2.c and 2.d) do not exhibit clear better perfor-
mances than the standard algorithms as it is the case for the Artificial dataset
(Fig. 1). A slight reduction of the obtained RMSE and a more consistent and
important reduction of the variances are the advantages shown by the robust
algorithms. This is more evident in the case of MLP. The RMSE obtained for all
models increased significantly when the contamination also increased, specially
in the case of OSA predictions. Even robust models are not as insensitive to the
% of outliers as in the case shown in Fig. 1.
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a) Standard models - OSA prediction. b) Standard models - free simulation.

c) Robust models - OSA prediction. d) Robust models - free simulation.

Fig. 2. Results for the Silver box dataset.

Table 2. p-values computed via Wilcoxon signed-rank test for the residuals obtained
in the best free simulation on the Artificial dataset with 30% of outliers. Red indicates
statistically similar results.

ELM-NLMM RVFL-NLMS RVFL-NLMM MLP-LMS MLP-LMM

ELM-NLMS 4.608945e-04 1.423818e-11 2.789759e-06 0.3039999415 1.054542e-06
ELM-NLMM 3.127407e-09 1.738496e-16 0.2769369016 1.007799e-10
RVFL-NLMS 1.314366e-02 0.0001062009 6.663213e-02
RVFL-NLMM 0.0086282427 7.283775e-01
MLP-LMS 3.664618e-03

An additional Wilcoxon signed-rank test for the residuals obtained in the
best free simulation with 30% of outliers was performed. Results are reported
in Tab. 2 for the Artificial dataset and in Tab. 3 for the Silver box dataset.
It can be seen that for the Silver box dataset all models perform significantly
different from each other and this is due to the small variance they exhibit.
This is not the case for the Artificial dataset, where some models perform not
significantly different from others. This is the case for ELM models which exhibit
no significant difference from the MLP-LMS model. RVFL models also exhibit
no significative difference with MLP-LMM model.
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Table 3. p-values computed via Wilcoxon signed-rank test for the residuals obtained
in the best free simulation on the Silver box dataset with 30% of outliers. All the results
were statistically different.

ELM-NLMM RVFL-NLMS RVFL-NLMM MLP-LMS MLP-LMM

ELM-NLMS 5.370802e-67 7.093561e-75 8.371801e-09 1.122239e-159 8.294698e-86
ELM-NLMM 1.036182e-03 9.285395e-100 1.466633e-41 3.493612e-11
RVFL-NLMS 2.397354e-68 1.904553e-30 9.663732e-02
RVFL-NLMM 9.958828e-160 3.048651e-115
MLP-LMS 4.956787e-63

As a final remark it can be said that even though results are not equally
clearly interpretable for both datasets, the robust algorithms achieved consis-
tently better performances. From the point of view of a reduced RMSE and
variance for the Artificial dataset and from the point of view of a reduced vari-
ance in the case of the experiments performed with the Silver box dataset. In
which concerns the % of outliers, the behavior of the robust algorithms was
clearly insensitive to the increment of the contamination rate for the Artificial
dataset, although that was not the case for the Silver box dataset. Overall, robust
versions of ELM and RVFL consistently achieved the best performances.

5 Conclusions and Further Work

In this paper we tackled the task of online nonlinear system identification in
the presence of outliers with randomized SLFNs. For that purpose, we decided
to replace the original batch OLS-based learning rules of the RVFL and ELM
networks with adaptive LMS-based ones, enabling recursive learning and training
from larger datasets. Seeking resilience to outliers, a robust version of the LMS
rule, known as LMM rule, was also considered as a learning algorithm.

We performed computational experiments with both an artificial and a real-
world datasets using incremental levels of contamination by outliers. The achieved
results are promising, with the evaluated robust randomized SLFNs being ca-
pable of fast learning of the system dynamics in an online fashion, i.e., without
the need of multiple epochs, even in the presence of outliers.

However, despite the appealing results of our evaluation, further experiments
are still needed in order to have a clear picture of the pros and cons of the
proposed approach. For instance, hyperparameter optimization (i.e. number of
hidden units and learning rates) remains an open issue, since it requires costly
rounds of cross-validation. Furthermore, we were not able to obtain a strong
resilience to outliers in the Silver box dataset, when compared to the good results
we presented for the Artificial dataset.

In this regard, we continue to evaluate the proposed methodology in other
benchmarking system identification datasets, as well as experimenting with other
adaptive learning rules based, for instance, on the recursive least-squares (RLS)
algorithm.
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