Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/70700
Type: Artigo de Evento
Title: Metaheuristic optimization for automatic clustering of customer-oriented supply chain data
Authors: Mattos, César Lincoln Cavalcante
Barreto, Guilherme de Alencar
Horstkemper, Dennis
Hellingrath, Bernd
Issue Date: 2017
Publisher: International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization
Citation: BARRETO, G. A. et al. Metaheuristic optimization for automatic clustering of customer-oriented supply chain data. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION, 12., 2017, Nancy. Anais... Nancy: IEEE, 2017. p. 1-8.
Abstract: In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology.
URI: http://www.repositorio.ufc.br/handle/riufc/70700
Appears in Collections:DETE - Trabalhos apresentados em eventos

Files in This Item:
File Description SizeFormat 
2017_eve_gabarreto.pdf618,71 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.