Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70700
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Mattos, César Lincoln Cavalcante | - |
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.contributor.author | Horstkemper, Dennis | - |
dc.contributor.author | Hellingrath, Bernd | - |
dc.date.accessioned | 2023-02-09T16:28:43Z | - |
dc.date.available | 2023-02-09T16:28:43Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | BARRETO, G. A. et al. Metaheuristic optimization for automatic clustering of customer-oriented supply chain data. In: INTERNATIONAL WORKSHOP ON SELF-ORGANIZING MAPS AND LEARNING VECTOR QUANTIZATION, CLUSTERING AND DATA VISUALIZATION, 12., 2017, Nancy. Anais... Nancy: IEEE, 2017. p. 1-8. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70700 | - |
dc.description.abstract | In this paper we evaluate metaheuristic optimization methods on a partitional clustering task of a real-world supply chain dataset, aiming at customer segmentation. For this purpose, we rely on the automatic clustering framework proposed by Das et al. [1], named henceforth DAK framework, by testing its performance for seven different metaheuristic optimization algorithm, namely: simulated annealing (SA), genetic algorithms (GA), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony (ABC), cuckoo search (CS) and fireworks algorithm (FA). An in-depth analysis of the obtained results is carried out in order to compare the performances of the metaheuristic optimization algorithms under the DAK framework with that of standard (i.e. non-automatic) clustering methodology. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization | pt_BR |
dc.title | Metaheuristic optimization for automatic clustering of customer-oriented supply chain data | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2017_eve_gabarreto.pdf | 618,71 kB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.