Please use this identifier to cite or link to this item: http://repositorio.ufc.br/handle/riufc/70686
Type: Artigo de Evento
Title: Multiple local ARX modeling for system identification using the self-organizing map
Authors: Souza, Luís Gustavo Mota
Barreto, Guilherme de Alencar
Issue Date: 2010
Publisher: European Symposium on Artificial Neural Networks
Citation: SOUZA, L. G. M.; BARRETO, G. A. Multiple local ARX modeling for system identification using the self-organizing map. In: EUROPEAN SYMPOSIUM ON ARTIFICIAL NEURAL NETWORKS, 18., 2010, Bruges. Anais... Bruges, 2010. p. 1-10.
Abstract: In this paper we build global NARX (Nonlinear Auto- Regressive with eXogenous variables) models from multiple local linear ARX models whose state spaces have been partitioned through Kohonen’s Self-Organizing Map. The studied models are evaluated in the task of identifying the inverse dynamics of a flexible robotic arm. Simulation results demonstrate that SOM-based multiple local ARX models perform better than a single ARX model and an MLP-based global NARX models.
URI: http://www.repositorio.ufc.br/handle/riufc/70686
Appears in Collections:DETE - Trabalhos apresentados em eventos

Files in This Item:
File Description SizeFormat 
2010_eve_gabarreto.pdf161,01 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.