
Multiple Local ARX Modeling for System
Identification Using the Self-Organizing Map

Lúıs Gustavo M. Souza1 and Guilherme A. Barreto2 ∗

1,2- Federal University of Ceará
Department Teleinformatics Enginnering

Av. Mister Hull, S/N - Campus of Pici, Center of Technology
CP 6005, CEP 60455-760, Fortaleza, CE, Brazil

Abstract. In this paper we build global NARX (Nonlinear Auto-
Regressive with eXogenous variables) models from multiple local linear
ARX models whose state spaces have been partitioned through Kohonen’s
Self-Organizing Map. The studied models are evaluated in the task of
identifying the inverse dynamics of a flexible robotic arm. Simulation re-
sults demonstrate that SOM-based multiple local ARX models perform
better than a single ARX model and an MLP-based global NARX models.

1 Problem Formulation

Several complex dynamical systems which can be described by the NARX model:

y(t) = f [y(t − 1), . . . , y(t − ny); u(t), u(t − 1), . . . , u(t − nu + 1)], (1)

where ny and nu are the (memory) orders of the dynamical model. In words,
Eq. (1) states that the system output y at time t depends, on the past ny output
values and on the past nu values of the input u. In many situations, it is also
desirable to approximate the inverse mapping of a nonlinear plant, given by

u(t) = f−1[y(t − 1), . . . , y(t − ny); u(t − 1), . . . , u(t − nu)]. (2)

In system identification, the goal is to obtain estimates of f(·) and/or f−1(·)
from available input-output time series data {u(t), y(t)}M

t=1.
SOM-based local dynamic modeling and control approaches have been suc-

cessfully applied to complex system identification and control tasks [1, 2, 3, 4, 5],
but these contributions still remain widely unknown by the Machine Learning
and Statistics communities. In this paper, we compare the performances of sys-
tem identification techniques which rely on the self-organizing map (SOM) [6]
for local function approximation. To the best of our knowledge, such an eval-
uation has not been reported elsewhere. In this sense, this is one of the main
contributions of this paper.

For the SOM and other unsupervised networks to be able to learn dynamical
mappings, they must have some type of short-term memory (STM) mechanism.
That is, the SOM should be capable of temporarily storing past information
about the system input and output vectors. There are several STM models, such

∗The authors thank FUNCAP (grant #1469/07) and CAPES/PRODOC for the financial
support.



as delay lines, leaky integrators, reaction-diffusion mechanisms and feedback
loops [7, 8], which can be incorporated into the SOM to allow it to approximate
a dynamical mapping f(·) or its inverse f−1(·). In order to draw a parallel with
standard system identification approaches, we limit ourselves to describe the
VQTAM approach in terms of time delays as STM mechanisms.

The remainder of the paper is organized as follows. In Section 2, SOM
architecture and its learning process are described. In Section 3, two SOM-based
local ARX models are introduced. Simulations and performance are presented
in Section 4. The paper is concluded in Section 5.

2 The Self-Organizing Map

The SOM is composed of two fully connected layers: an input layer and a com-
petitive layer. The input layer simply receives the incoming input vector and
forwards it to the competitive layer through weight vectors. The goal of SOM is
to represent the input data distribution by the distribution of the weight vectors.
Competitive learning drives the winning weight vector to become more similar to
the input data. Throughout this paper, we represent the weight vector between
input layer and neuron i as

wi = (wi,1, wi,2, . . . , wi,j , . . . , wi,p)T , (3)

where wi,j ∈ R denotes the weight connecting node j in the input layer with
neuron i, and p, is the dimension of the input vector. In what follows, a brief
description of the original SOM algorithm is given.

Firstly we use Euclidean distance metric to find the current winning neuron,
i∗(t), as given by the following expression:

i∗(t) = arg min
∀i∈A

‖x(t) − wi(t)‖ (4)

where x(t) ∈ R
p denotes the current input vector, wi(t) ∈ R

p is the weight
vector of neuron i, and t denotes the iterations of the algorithm. Secondly, it
is necessary to adjust the weight vectors of the winning neuron and of those
neurons belonging to its neighborhood:

wi(t + 1) = wi(t) + α(t)h(i∗, i; t)[x(t) − wi(t)] (5)

where 0 < α(t) < 1 is the learning rate and h(i∗, i; t) is a gaussian weighting
function that limits the neighborhood of the winning neuron:

h(i∗, i; t) = exp
(
−‖ri(t) − ri∗(t)‖2

2σ2(t)

)
(6)

where ri(t) and ri∗(t), are respectively, the positions of neurons i and i∗ in
a predefined output array where the neurons are arranged in the nodes, and
σ(t) > 0 defines the radius of the neighborhood function at time t.



The variables α(t) and σ(t) should both decay with time to guarantee con-
vergence of the weight vectors to stable steady states. In this paper, we adopt
an exponential decay for both, given by:

α(t) = α0

(
αT

α0

)(t/T )

and σ(t) = σ0

(
σT

σ0

)(t/T )

(7)

where α0 (σ0) and αT (σT ) are the initial and final values of α(t) (σ(t)), respec-
tively. The operations defined by Eqs. (4) and (7) are repeated until a steady
state of global ordering of the weight vectors has been achieved. In this case, we
say that the map has converged.

The resulting map also preserves the topology of the input samples in the
sense that adjacent input patterns are mapped into adjacent neurons on the
map. Due to this topology-preserving property, the SOM is able to cluster input
information and spatial relationships of the data on the map. This clustering
ability of the SOM has shown to be quite useful for the identification of nonlinear
dynamical systems [9]. However, the number of neurons required by the SOM
to provide a good approximation of a given input-output mapping is very high,
specially when compared to the MLP and RBF neural networks. To alleviate
this limitation of the plain SOM algorithm to some extent, we introduce two
SOM-based multiple local ARX models.

3 Multiple Local ARX Models Based on the SOM

In this section, we describe two approaches to the system identification problem
that use the SOM as a building block. The basic idea behind both is the par-
titioning of the input space into non-overlapping regions, called Voronoi cells,
whose centroids correspond to the weight vectors of the SOM. Then an inter-
polating hyperplane is associated with each Voronoi cell or to a small subset of
them, in order to estimate the output.

3.1 Local Linear Mapping

The first architecture to be described is called Local Linear Mapping (LLM) [10].
The basic idea of the LLM is to associate each neuron in the SOM with a
conventional FIR/LMS linear filter. The SOM array is used to quantize the input
space in a reduced number of prototype vectors (and hence, Voronoi cells), while
the filter associated with the winning neuron provides a local linear estimator of
the output of the mapping being approximated.

Thus, for the inverse modeling task of interest, each input vector x(t) ∈ R
p+q

is defined as

x(t) = [u(t − 1), . . . , u(t − q); y(t − 1), . . . , y(t − p)]T . (8)

Clustering (or vector quantization) of the input space X is performed by the
LLM as in the usual SOM algorithm, with each neuron i owning a prototype
vector wi, i = 1, . . . , N .



Additionally, there is a coefficient vector ai ∈ R
p+q associated to each weight

vector wi, which plays the role of the coefficients of an (linear) ARX model:

ai(t) = [bi,1(t), . . . , bi,q(t), ai,1(t), . . . , ai,p(t)]T . (9)

The output value is provided by one of the local ARX model as follows

û(t) =
q∑

k=1

bi∗,k(t)u(t − k) +
p∑

l=1

ai∗,l(t)y(t − l)

= aT
i∗(t)x(t), (10)

where ai∗(t) is the coefficient vector associated with the winning neuron i∗(t).
From Eq. (10), one can easily note that the coefficient vector ai∗(t) is used to
build a local linear approximation of the output of the desired nonlinear mapping.

Since the adjustable parameters of the LLM algorithm are the set of proto-
type vectors wi(t) and their associated coefficient vectors ai(t), i = 1, 2, . . . , p+q,
we need two learning rules. The rule for updating the prototype vectors wi fol-
lows exactly the one given in Eq. (5). The learning rule of the coefficient vectors
ai(t) is an extension of the normalized LMS algorithm, that also takes into
account the influence of the neighborhood function h(i∗, i; t):

ai(t + 1) = ai(t) + α′h(i∗, i; t)Δai(t), (11)

where 0 < α′ � 1 denotes the learning rate of the coefficient vector, and Δai(t)
is the error correction rule of Widrow-Hoff, given by

Δai(t) =
[
u(t) − aT

i (t)x(t)
] x(t)
‖x(t)‖2

, (12)

where u(t) is the desired output of the inverse mapping being approximated.

3.2 Prototype-Based Local Least-Squares Model

The algorithm to be described in this section, called K-winners SOM (KSOM),
was originally applied to nonstationary time series prediction [5]. In this paper
we aim to evaluate this architecture in the context of nonlinear system identi-
fication. For training purposes, the KSOM algorithm depends on the VQTAM
(Vector-Quantized Temporal Associative Memory) model [9], which is a simple
extension of the SOM algorithm that simultaneously performs vector quantiza-
tion on the input and output spaces of a given nonlinear mapping.

In the VQTAM model, the input vector at time step t, x(t), is composed of
two parts. The first part, denoted xin(t) ∈ R

p+q, carries data about the input
of the dynamic mapping to be learned. The second part, denoted xout(t) ∈ R,
contains data concerning the desired output of this mapping. The weight vector
of neuron i, wi(t), has its dimension increased accordingly. These changes are
formulated as follows:

x(t) =
(

xin(t)
xout(t)

)
and wi(t) =

(
win

i (t)
wout

i (t)

)
, (13)



where win
i (t) ∈ R

p+q and wout
i (t) ∈ R are, respectively, the portions of the weight

(prototype) vector which store information about the inputs and the outputs of
the desired mapping. Depending on the variables chosen to build the vector
xin(t) and scalar xout(t) one can use the SOM algorithm to learn the forward or
the inverse mapping of a given plant (system). For instance, if the interest is in
inverse identification, then we define

xin(t) = [u(t−1), . . . , u(t−q); y(t−1), . . . , y(t−p)]T and xout(t) = u(t). (14)

The winning neuron at time step t is determined based only on xin(t), i.e.

i∗(t) = arg min
∀i∈A

{‖xin(t) − win
i (t)‖}. (15)

For updating the weights, however, both xin(t) and xout(t) are used:

Δwin
i (t) = α(t)h(i∗, i; t)[xin(t) − win

i (t)] (16)
Δwout

i (t) = α(t)h(i∗, i; t)[xout(t) − wout
i (t)] (17)

where 0 < α(t) < 1 is the learning rate, and h(i∗, i; t) is a time-varying Gaussian
neighborhood function defined as in Eq. (6).

The learning rule in Eq. (16) performs topology-preserving vector quantiza-
tion on the input space, while the rule in Eq. (17) acts similarly on the output
space of the mapping being learned. As the training proceeds, the SOM learns
to associate the input prototype vectors win

i with the corresponding output pro-
totype vectors wout

i . The SOM-based associative memory implemented by the
VQTAM can then be used for function approximation purposes.

Since the VQTAM is essentially a vector quantization algorithm, it requires
too many neurons to provide small prediction errors when approximating con-
tinuous mappings. This limitation can be somewhat alleviated through the use
of interpolation methods specially designed for the SOM architecture, such as
geometric interpolation [11] and topological interpolation [12]. Another possibil-
ity is to devise a local linear interpolation strategy over the neighborhood of the
winning neuron. For example, after training the VQTAM model, the coefficient
vector a(t) of a local ARX model for estimating the mapping output is computed
for each time step t by the standard least-squares estimation (LSE) technique,
using the weight vectors of the K (K � 1) neurons closest to the current input
vector, instead of using the original data vectors.

Let the set of K winning weight vectors at time t to be denoted by {wi∗1 ,
wi∗2 , . . . ,wi∗

K
}. Recall that due to the VQTAM training style, each weight

vector wi(t) has a portion associated with xin(t) and other associated with
xout(t). So, the KSOM uses the corresponding K pairs of prototype vectors
{win

i∗k
(t), wout

i∗k
(t)}K

k=1, with the aim of building a local linear function at time t:

wout
i∗
k

= aT (t)win
i∗
k
(t), k = 1, . . . , K (18)

where a(t) = [b1(t), . . . , bq(t), a1(t), . . . , ap(t)]T is a time-varying coefficient vec-
tor. Equation (18) can be written in a matrix form as

wout(t) = R(t)a(t), (19)



where the output vector wout and the regression matrix R at time t are defined
as follows

wout(t) = [wout
i∗1 ,1(t) wout

i∗2 ,1(t) · · · wout
i∗K ,1(t)]

T (20)

and

R(t) =

⎛
⎜⎜⎜⎝

win
i∗1 ,1(t) win

i∗1 ,2(t) · · · win
i∗1 ,p+q(t)

win
i∗2 ,1(t) win

i∗2 ,2(t) · · · win
i∗2 ,p+q(t)

...
...

...
...

win
i∗K ,1(t) win

i∗K ,2(t) · · · win
i∗K ,p+q(t)

⎞
⎟⎟⎟⎠ . (21)

The coefficient vector a(t) is then computed by the following Tikhonov-regularized
pseudoinverse (minimum norm) procedure

a(t) =
(
RT (t)R(t) + λI

)−1
RT (t)wout(t), (22)

where I is a identity matrix of order K and λ > 0 (e.g. λ = 0.001) is a small
regularization constant. Once a(t) is estimated, we can locally approximate the
output of the nonlinear mapping by the output of the following ARX model:

û(t) =
q∑

k=1

bk(t)u(t − k) +
p∑

l=1

al(t)y(t − l) = aT (t)xin(t)

The KSOM can be considered a local (linear) ARX model due to the use
of a subset of K weight vectors chosen from the whole set of N weight vectors.
This is one of the differences between KSOM and the LLM approaches. While
the former uses K � N prototype vectors to build the local linear model, the
latter uses a single prototype. Another difference is that the LLM approach uses
a LMS-like learning rule to update the coefficient vector of the winning neuron.
Once training is completed all coefficient vectors ai, i = 1, . . . , N , are frozen
for posterior use. The KSOM, instead, uses a LSE-like procedure to find the
coefficient vector a(t) each time an input vector is presented, so that a single
linear mapping is built at each time step.

Cho et al. [3] proposed a neural architecture that is equivalent to the KSOM
in the sense that the coefficient vector a(t) is computed from K prototype vectors
of a trained SOM using the LSE technique. However, the required prototype
vectors are not selected as the K nearest prototypes to the current input vector,
but rather automatically selected as the winning prototype at time t and its
K −1 topological neighbors. If topological defects are present, as usually occurs
for multidimensional data, the KSOM provides more accurate results.

Chen and Xi [13] also proposed a local linear regression model whose coeffi-
cient vectors are computed using the prototypes of a competitive learning net-
work through the recursive least-squares algorithm. However, the competitive
network used by Chen and Xi does not have the topology-preserving properties
of the SOM algorithm, which has shown to be important for system identification
purposes [9].



0 200 400 600 800 1000
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

time

re
a

c
ti
o

n
 t

o
rq

u
e

 o
f 

th
e

 s
tr

u
c
tu

re

(a)

0 200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time

a
c
c
e

la
ra

ti
o

n
 o

f 
th

e
 f

le
x
ib

le
 a

rm

(b)

Fig. 1: Measured values of reaction torque of the structure (a) and acceleration
of the flexible arm (b).

4 Computer Simulations and Discussion

The proposed SOM-based multiple local ARX models are evaluated in the iden-
tification of the inverse dynamics of a flexible robot arm. The arm is installed
on an electric motor. We want to model the input-output mapping from the
measured reaction torque of the structure on the ground to the acceleration of
the flexible arm1. Figure 1 shows the measured values of the reaction torque of
the structure (input time series, {u(t)}) and the acceleration of the flexible arm
(output time series, {y(t)}).

For the sake of completeness, the LLM- and KSOM-based local ARX models
are compared with an one-hidden-layer MLP trained by the standard back-
propagation algorithm (MLP-1h), another one-hidden-layer MLP trained by
the Levenberg-Marquardt (MLP-LM) algorithm and, finally, a two-hidden-layer
MLP (MLP-2h) trained by the standard backpropagation algorithm. All these
global NARX models are also compared with the linear Auto-Regressive with
eXogenous variables (ARX) model, trained on-line through the plain LMS algo-
rithm.

For all MLP-based global NARX models, the activation function of the hid-
den neurons is the hyperbolic tangent function, while the output neuron uses a
linear one. After some experimentation, the best configuration of the MLP-1h
and MLP-LM models have 30 hidden neurons. For the MLP-2h, the number of

1These data were obtained in the framework of the Belgian Programme on Interuniversity
Attraction Poles (IUAP-nr.50) initiated by the Belgian State.



Table 1: Performances of the global and local models for the robotic arm data.
Neural NMSE
Models mean min max variance

KSOM 0.0064 0.0045 0.0117 1.83×10−6

KSOM-PL 0.0187 0.0082 0.0657 8.47×10−5

MLP-LM 0.1488 0.0657 0.4936 0.0107

MLP-1h 0.1622 0.1549 0.1699 1.03×10−5

VQTAM-T 0.1669 0.1199 0.2263 6.14×10−4

LLM 0.3176 0.2685 0.3558 2.23×10−4

ARX 0.3848 0.3848 0.3848 0.0445

VQTAM-G 0.4968 0.3700 0.6458 0.0024

MLP-2h 0.6963 0.5978 1.5310 0.0368

neurons in second hidden layer is heuristically set to half the number of neurons
in the first hidden layer. The learning rate for the MLPs was set to 0.1.

During the prediction phase, the neural models should compute the estima-
tion error (residuals) e(t) = u(t) − û(t), where u(t) is desired output and û(t)
is the estimate provided by each neural model. The performances of all models
are assessed through the normalized mean squared error (NMSE):

NMSE =
∑M

t=1 e2(t)
M · σ̂2

u

=
∑M

t=1(u(t) − û(t))2

M · σ̂2
u

(23)

where σ̂2
u is the variance of the original time series {u(t)}M

t=1 and M is the length
of the sequence of residuals.

The models are trained using the first 820 samples of the input-output signal
sequences (approximately, 80% of the total) and tested with the remaining 204
samples. The input and output memory orders are set to p = 4 and q = 5,
respectively. The obtained results are shown in Table 1, where are displayed the
mean, minimum, maximum and variance of the NMSE values, measured along
the 100 training/testing runs. The weights of the neural models were randomly
initialized at each run. In this table, the models are again sorted in increasing
order of the mean NMSE values.

The number of neurons for all SOM-based local ARX models is set to 30.
For the KSOM-based local NARX model, K is equal to 25. For each SOM-based
model, the initial and final learning rates are set to α0 = 0.5 and αT = 0.01.
The initial and final values of radius of the neighborhood function are σ0 = N/2
and σT = 0.001, where N , the number of neurons in the SOM, is set to 30. The
learning rate α′ is set to 0.1.

For the sake of curiosity, the VQTAM with topological (VQTAM-T) and geo-
metric (VQTAM-G) interpolations have been tested with the hope of improving
the approximation accuracy of the plain VQTAM model. The KSOM-based
local ARX model was also implemented using the recently proposed Parameter-
less SOM (PLSOM) architecture [14], which requires no annealing of the learning



0 50 100 150 200
−1

−0.5

0

0.5

1

time

re
a

c
ti
o

n
 t

o
rq

u
e

 o
f 

th
e

 s
tr

u
c
tu

re
KSOM

(a)

0 50 100 150 200
−1

−0.5

0

0.5

1

time

re
a

c
ti
o

n
 t

o
rq

u
e

 o
f 

th
e

 s
tr

u
c
tu

re

MLP−LM

(b)

Fig. 2: Typical estimated sequences of reaction torque of the structure provided
by the KSOM and MLP-LM models. Dashed lines denote actual sample values,
while the solid line indicates the estimated sequence.

rate and neighborhood width parameters. The fundamental difference between
the PLSOM and the SOM is that while the SOM depends on the learning rate
and neighborhood size to decrease over time, e.g., as a function of the number of
iterations of the learning algorithm, the PLSOM calculates these values based
on the local quadratic fitting error of the map to the input space.

The performance of KSOM-based local ARX model on this real-world ap-
plication is by far the best one, even better than the MLP-based global NARX
models. A better performance of the KSOM-based model in comparison to the
LLM-based model is also verified. This can be partly explained by the fact that
the parameters of the KSOM-based local model are estimated in a batch mode
from the K closest prototypes, while the parameters of the LLM-based model
are estimated in an online mode.

The LLM-based local ARX model performed only better than the ARX,
VQTAM-G and MLP-2h models. The performances of these three models were
very poor. The performance of the VQTAM-T is statistically equivalent to that
of the MLP-1h model. Among the MLP-based models, the use of second-order
learning algorithm was crucial to the good performance of the MLP-LM model.

Finally, Figure 2 shows typical sequences of estimated values of the reaction
torque of the structure provided by the best local and global NARX models. Fig-
ure 2a shows the sequence generated by the KSOM-based model, while Figure 2b
shows the sequence estimated by the MLP-LM model.



5 Conclusion

We have attempted to tackle the problem of nonlinear system identification
using the local linear modeling methodology. For that purpose we presented
two multiple local ARX models based on Kohonen’s self-organizing map and
evaluated them in the identification of the inverse dynamics of one real-world
data set, a robot arm. The first local ARX model builds a fixed number of local
ARX models, one for each Voronoi region associated with the prototype vectors
of the SOM. The second one builds only a single local ARX model using the
prototypes vectors closest to the current input vector. It has been shown for
the robot arm data set the KSOM-based local ARX model presented the best
performance among all models.

References

[1] J. Cho, J. Principe, D. Erdogmus, and M. Motter. Quasi-sliding mode control strategy
based on multiple linear models. Neurocomputing, 70(4-6):962–974, 2007.

[2] I. Dı́az-Blanco, A. A. Cuadrado-Vega, A. B. Diez-González, J. J. Fuertes-Mart́ınez,
M. Domı́nguez-González, and P. Reguera-Acevedo. Visualization of dynamics using lo-
cal dynamic modelling with self-organizing maps. Lecture Notes on Computer Science,
4668:609–617, 2007.

[3] J. Cho, J. Principe, D. Erdogmus, and M. Motter. Modeling and inverse controller design
for an unmanned aerial vehicle based on the self-organizing map. IEEE Transactions on
Neural Networks, 17(2):445–460, 2006.

[4] J. Lan, J. Cho, D. Erdogmus, J. C. Principe, M. A. Motter, and J. Xu. Local linear
PID controllers for nonlinear control. International Journal of Control and Intelligent
Systems, 33(1):26–35, 2005.

[5] G.A. Barreto, J.C.M. Mota, L.G.M. Souza, and R.A. Frota. Nonstationary time series
prediction using local models based on competitive neural networks. Lecture Notes in
Computer Science, 3029:1146–1155, 2004.

[6] T. K. Kohonen. Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg, 2nd extended
edition, 1997.

[7] J. C. Principe, N. R. Euliano, and S. Garani. Principles and networks for self-organization
in space-time. Neural Networks, 15(8–9):1069–1083, 2002.

[8] G. A. Barreto and A. F. R. Araújo. Time in self-organizing maps: an overview of models.
International Journal of Computer Research, 10(2):139–179, 2001.

[9] G. A. Barreto and A. F. R. Araújo. Identification and control of dynamical systems using
the self-organizing map. IEEE Transactions on Neural Networks, 15(5):1244–1259, 2004.

[10] J. Walter, H. Ritter, and K. Schulten. Non-linear prediction with self-organizing
map. In Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’90), volume 1, pages 587–592, 1990.

[11] J. Göppert and W. Rosenstiel. Topology preserving interpolation in selforganizing maps.
In Proceedings of the NeuroNIMES’93, pages 425–434, 1993.

[12] J. Göppert and W. Rosenstiel. Topological interpolation in som by affine transformations.
In Proceedings of the European Symposium on Artificial Neural Networks (ESANN’95),
pages 15–20, 1995.

[13] J.-Q. Chen and Y.-G. Xi. Nonlinear system modeling by competitive learning and adaptive
fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics-Part C,
28(2):231–238, 1998.

[14] E. Berglund and J. Sitte. The parameterless self-organizing map algorithm. IEEE Trans-
actions on Neural Networks, 17(2):305–316, 2006.


