Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70684
Tipo: Artigo de Evento
Título : Unsupervised context-based learning of multiple temporal sequences
Autor : Barreto, Guilherme de Alencar
Araújo, Aluízio Fausto Ribeiro
Fecha de publicación : 1999
Editorial : International Joint Conference on Neural Networks
Citación : BARRETO, G. A.; ARAÚJO, A. F. R. Unsupervised context-based learning of multiple temporal sequences. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, 1999, Washington, D.C. Anais... Washington, D.C.: IEEE, 1999. p. 1102-1106.
Abstract: A self-organizing neural network is proposed to handle multiple temporal sequences with states in common. The proposed network combines context-based competitive learning with time-delayed Hebbian learning to encode spatial features and temporal order of sequence items. A responsibility function to avoid catastrophic forgetting, and a redundancy mechanism to provide noise and fault tolerance increase the reliability of the model. States shared by different sequences are encoded by a single neuron, whereas context information indicates the correct sequence to be recalled in the case of ambiguity. Simulations with trajectories of a PUMA 560 robot are performed to test the network accuracy, robustness to noise and tolerance to faults.
URI : http://www.repositorio.ufc.br/handle/riufc/70684
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1999_eve_gabarreto.pdf471,16 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.