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Abstract 
A seyorganizing neural network is proposed to handle 
multiple temporal sequences with states in common. The 
proposed network combines context-based competitive 
learning with time-delayed Hebbian learning to encode 
spatial features and temporal order of sequence items. A 
responsibility jirnction to avoid catastrophic forgetting, 
and a redundancy mechanism to provide noise and fault- 
tolerance increase the reliability of the model. States 
shared by diflerent sequences are encoded by a single 
neuron, whereas context information indicates the correct 
sequence to be recalled in the case of ambiguiq. 
Simulations with trajectories of a P U M  560 robot are 
performed to test the network accuracy, robustness to 
noise and tolerance to faults. 

1. Introduction 

Many engineering and cognitive tasks require ability to 
process spatio-temporal sequences. This sequential 
patterns usually takes the form of a finite, discrete set of 
items appearing successively in time. Such sequences 
carry information on the static nature of an individual item, 
and on the temporal order of their items [ 13. 

A number of memory models for sequential patterns have 
been proposed in the context of verbal learning [2], but 
they have similar counterparts in the domain of neural 
models for robot control. Basically, three paradigms have 
been applied successllly: associative chaining [3], 
positional coding [4], and chunking [SI. In the associative 
chaining hypothesis, each item in a sequence is associated 
with its precedent items in either a unidirectional or bi- 
directional fashion. Thus, each item is cued by the 
preceding ones. In the positional coding hypothesis, each 
list item is associated with a positional code referring to its 
location in the sequence. Such an information is used 
during recall to reconstruct the sequence in the correct 
order. The chunking hypothesis refers to compressed, 
categorical, or unitized representations of sequence items 

which behave fimctionally as a single item. As mentioned, 
these paradigms have been used within the framework of 
artificial neural networks (ANN). For instance, recurrent 
networks [6], [7]; Hopfield-like associative memory [8], 
[9]; and unsupervised learning models [lo], [ l l ]  follow the 
principle of associative chaining. 

Regarding the application of unsupervised models to robot 
control, Althbfer & Bugmann [12] proposed a two-stage 
neural network model for planning, learning and retrieval 
of robot arm movements based on the associative chaining 
paradigm. The first stage implements a grid-like neural 
network for path planning, and the second stage learns the 
trajectories, generated by the first one, through RJ3F nodes 
sequentially connected. This model produces smooth 
movements and accurate final positions for trajectories 
with no repeated points. Bugmann et al. [13] extended the 
former model by combining associative chaining and 
positional coding. This model aims at learning the 
sequence of positions forming the trajectory of an 
autonomous wheelchair, and operates by producing the 
next position for the wheelchair. Positional information is 
used to disambiguate recall of repeated points. This 
network is able to handle multiple trajectories provided 
that a shared point does not occur in the same position. 
Denham & McCabe [14] uses the chunking paradigm to 
control an autonomous mobile robot that uses sequences of 
pairs (sensory stimuli, motor actions) learned over time, to 
build an internal model of the world in which the robot 
navigates. The network in Wang & Arbib [ 151 is suggested 
as the main controller. However, the proposed system 
demands additional work to be formalized and 
implemented in a real-world robot. 

As the majority of the existing unsupervised models for 
sequence processing does not directly address the issue of 
multiple temporal sequence learning (see Wang and 
Yuwono [16] as an exception), the aim of this work is to 
develop an unsupervised neural network, based on 
chaining hypothesis, to learn and recall temporal patterns. 
The remaining of the paper is organized as follows. In 
Section 2, we present the neural algorithm. In Setion 3, 
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we evaluate the model through simulations. In Section 4, 
we conclude the paper and give possible directions for 
fiuther work. 

2. The Proposed Model 

Two characteristics are essential for autonomous learning 
and reproduction of sequential patterns. For purpose of 
learning, a mechanism must be implemented to extract and 
store temporal relationship between patterns. For purpose 
of recall, the network dynamics must be defined to 
reproduce the previously observed sequence. 

Sequences are presented to the network item-by-item. 
Then, the neural model should store each item individually 
as well as the temporal order of such input items. In order 
to use memory resources efficiently, each repetition of a 
state, called shared stute, is stored in a single neuron. 
During recall, the network has to produce the successor of 
each input item. The network architecture is presented in 
Figure 1. 

4 4 4  . . A  

Sensor v-r context vector 

Figure 1. The topology of the proposed network. Only some 
connections are shown. 

Each input pattern, v(t) E Pq, is comprised of two parts. 
The sensor vector, s(t) E IF, corresponds to an observed 
sequence item at time t. In this work, it takes the values of 
the spatial position of the end-effector, joint angles and 
applied torques. The context vector, c(t) E P, is used to 
handle ambiguities during recall. 

Associated with the j-th output neuron there is a 
feedforward weight vector, wj(t)  = { w ~ ( t ) , w ~ ( i ) }  , j  = 1, 
..., n, responsible for storing each one of the sequence 

items ~(2) .  Such a vector is divided into a sensor, ws (t) , 
and a context, w;( t ) ,  part that encodes s(t) and c(t) 

respectively. Also, there is a lateral weight vector, m,{t), 
which should encode the temporal order of the sequence 
by connecting consecutive items. Finally, it is defined an 
activation state, q<t) E R, that identifies the neuron whose 
weight vector w f ( t )  is the most similar to the current 

sensor vector s(t), and an output value, ~ { t )  E R, to 
indicate the neuron whose weight vector contains the next 
item in the stored sequence. The learning processes are 
described next. 

Context-based competitive learning: After the 
presentation of the input vector v(t)={ s(t), c(t)}, the output 
neurons “compete” for encoding it. The competition 
process uses Euclidean distances as similarity measures. 
Hence, we define a sensor distance, DJ( t )  E R, and a 

confext distance, DJ ( t )  E R, for each output unitj: 

where I( x 1l2=x? +...+xi+q. The distance Dj”(f) is used 
to find the winners of the current competition, while 

DJ ( t )  is used to solve ambiguities during recall. 

It is worth remembering that, to guarantee accurate recall 
of all states of a given sequence, the network should avoid 
the situation in which a neuron wins the competition more 
than once. This can be accomplished by introducing a 
function R,<t), called responsibility function, that indicates 
whether a neuron is already responsible for encoding a 
given sequence item. If R,{t) > 0, neuronj is excluded from 
subsequent competitions for sequence components. If R#) 
= 0, neuron j is allowed to compete. 

‘ 

In sequel, we define the following function: 

where DOS is an acronym for degree of similarity. This 
constant specifies a criterion to allow neurons to be chosen 
winners even if they have already won before. This 
mechanism contemplates situations in which repeated or 
shared states occur, allowing them to be encoded by the 
same neuron. 

Finally, the output neurons are ranked, as follows: 

where p&), i = l,..., n, is the index of the i-th closest 
output neuron to s(t). We choose K neurons, p(t) = (pl(t), 
p&), ...,PA t)), 0 < K << n, as winners of the current 
competition. They will represent the current input vector 
v(t). During learning, the redundancy degree K is often set 
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to a value greater than one in order to guarantee tolerance 
to faults and distortions in the input sequence caused by 
noise. During recall, it is ahvqys set to K=l. 

The corresponding activation values decay linearly from a 
maximum value a,, E R, for pLl(f) ,  to a minimum ami, E 
R, for pdf), according to the following equation: 

where a,, and ami, are user-defined constants. The 
responsibility function R'{f) is updated every time a new 
activation pattern, a(t) = (q(t),..., a,<t))', is computed 

R j ( f  +1)= R j  (f)+ pa j ( f )  j = l,...,n (5) 

where p >> 0 is the exclusion constant. 

The competitive weights are adjusted according to the 
following equation: 

w (t + 1) = w ( t )  +qui (t)[v(t) - w (t)] (6) 

where 0 < q S 1 is the learning rate. Only neurons with 
activation different of zero are allowed to learn. If we 
adopt q G 1, an input vector item v(f) is learned very 
quickly, allowing an entire sequence to be learned in only 
one pass of its components. 

Time-delayed Hebbian Learning: To encode transitions 
between consecutive states, we employ a lateral coupling 
structure. Such unidirectional connections are adjusted 
when the winners of each competition are determined, 
indicating the correct temporal order of appearance of the 
sequence items. The learning rule is [ 171: 

mjl(t+l)= mj,(t)+aaj(t)a,(t-l) j , l=1,  ..., n (7) 

where a > 0 is the lateral learning rate. Equation (7) 
updates the weights from winners at time f-1 to winners at 
time t. In other words, state transitions are learned by the 
lateral connections between consecutive winners. During 
recall, the resulting lateral coupling structure takes the 
network to respond with the neurons that encoded the 
successor of the current input vector. 

Kopecz [ll], Montague & Sejnowski [18], Girolami & 
Fyfe [19], and Wallis [20] have also used time-delayed 
Hebbian rules to model temporal aspects of sequences. 

The network output values are calculated as follows: 

where the weight vector of the neuron with the largest 
value for y,{t) contains the next configuration for the robot 
arm. This weight vector is sent to the robot controllers. 

The role of the first factor on the right hand side of 
Equation (8) is to solve ambiguities. If a shared state has 
been reached, there are various possibilities for the next 
state. This uncertainty is resolved by that factor, because 
the correct neuron is the one with the smallest context 

distance DJ ( f )  which yields larger values for y,{f). 

3. Simulations and Discussions 

The proposed model is applied as part of a larger control 
system for trajectory tracking of a 6-DOF PUMA 560 
robot. This task aims at converting a description of a 
desired motion into a trajectory defined as a time sequence 
of intermediate configurations between an origin and a 
destination [21]. The desired motion is that of an industrial 
robot arm consisting of joints driven by individual 
actuators. The robot is required to follow a prescribed path, 
so that its controllers must coordinate the movements of 
the robot individual joints to achieve the desired overall 
movement along the path. In this sense, our model acts as a 
trajectory planner, outputting a sequence of arm 
configurations that forms the input to the arm control 
system. 

The trajectories in this work have one state in common, 
and they are grouped into 3 types according to the position 
of the shared states in the sequence. Trajectories sharing 
the same origin but with different destinations are called 
1-m (one-to-many) trajectories. This group of trajectories, 
considered in the reverse temporal order, are called m-1 
(many-to-one), since now they share the same destination. 
Trajectories that share intermediate states (other than the 
origin and destination ones) are called of type mm-wc 
(many-to-many with crossing). These trajectories have 
already been used to evaluate supervised neural models for 
robot control [22], [23]. 

The fundamental problem in processing trajectories with 
repeated or shared items is to determine which trajectory 
the arm should follow when it reaches such a bifurcation 
point. In this paper, trajectories were constructed with the 
toolbox robotics of Matlab [24], and to visualize the 
learned trajectories, a robot simulator was developed. 
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The network parameters and constants for all simulations 
are the following: p = 15, q = 3, n = 250, DOS = lo4, 
U- = 1, % = 0.98, p = 100, q = 1, a = 0.8. The weights 
and functions are initialized only in the beginning of 
training: ?do) = rand[O, 13, mj,(0) = 0, and R,(O) = 0, for 
all i, j and I: The activation and output values are 
initialized every time a new sequence item is observed: 
u,{O) = x{O) = 0, for all j. The context c(r) is always set to 
the spatial position of the destination, (xf, yf, z,), of the 
trajectory being processed and remain unchanged for each 
trajectory. For the present simulations, this information is 
sufficient to solve any ambiguity. The network is evaluated 
in terms of mean square error (MSE) values obtained from 
the comparison between the desired and the retrieved 
spatial positions of the arm. 

For the first test, three 1-m trajectories (with 11 states) are 
presented to the network sequentially, one after the other. 
These trajectories share a point at spatial position 
(0.60,0.10,0.00). Recall is performed to verify if the 
sequences were encoded accurately and in the correct 
order. The results in Figure 2 illustrate a correct recall 
procedure. Both, learning and recall, are perfoxmed using 
noise-free inputs. Under these conditions, the MSE errors 
during recall are very small, of the order of lo’. 

Figure 2. Desired ‘0’ and retrieved I.’ spatial trajectories with 
same starting point (0.6,O.l. 0.0). 

Figure 3 allows the visualization in a simulated robot 
configuration space of one of the retrieved trajectories (I- 
G1) oftype 1-m. 

Figure 3. Visualization of a retrieved trajectory with 11 states. 

In the next test, for a given origin and destination, we 
evaluate the effect of varying the number of intermediate 
states on the network performance under noisy conditions. 
For this, we fixed the redundancy degree K and used 
trajectories of type m-1 with 11, 21, 41, and 81 points 
respectively. A typical result for K=3 is shown in Figure 4. 
For the sake of clarity, only the results for trajectories with 
1 1 and 81 points are presented. 
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Figure 4. Effect of varying the number of states of a given 
trajectory, for a fixed K, on the network recall performance 
under the addition of Gaussian noise N(0.d) to the input 

From Figure 4, one can conclude that, for a fixed K, a 
higher number of intermediate points reduces the MSE 
levels. The results for 21 and 41-point trajectories (not 
shown) also confirm this assertive. 

The last simulation evaluates the effect of varying the 
redundancy degree K, for a fixed number of intermediate 
states, on the network performance under noisy conditions. 
For this, we used trajectories of type mm-wc with 81 
points, and varied K from 1 to 5. A typical result is shown 
in Figure 5. For the sake of clarity, only the results for K=3 
and 4 are presented. 
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Figure 5. Effect of varying the redundancy degree K, for a 
fixed number of states, of a given trajectory, on the network 
recall performance under the addition of Gaussian noise 
N(0,d) to the input. 
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From Figure 5 ,  one can infer that there is an upper bound 
for values of K,  since on average K = 3 gives better results 
for MSE that K=4. The results for K = 5 (not shown) are 
poorer than that for K I 4. This is an interesting result 
because memory requirements can be roughly estimated by 
analyzing the values of K for each stored sequence. 

4. Conclusions 

In the proposed model, multiple sequences are stored in a 
simple network in such a way that the patterns of activity 
for items representation encodes both the individual items 
that have occurred and the temporal order in which they 
have occurred. 

Our model behave similarly to the Grossberg's outstar 
avalanche model [lo], in the sense that our method treats 
both simple and complex sequences in the same way, and a 
complex sequence can be recalled as easily as a simple 
one. The basic difference is that outstar avalanche stores 
repeated or shared items as different copies, while our 
model stores them as a unique copy which can still 
correctly recall the sequence due to context information. 
As a result, our model yields an efficient use of memory 
space. Also, the proposed model is more reliable because, 
being redundant, it recalls stored sequences even if 
neurons or their connections are damaged. The problem of 
udhoc wiring for temporal coupling, existing, for example, 
in the outstar avalanche, Bugmann & AlthBfer and 
Bugmann et al. models has been avoided here. Compared 
with the model proposed by Kopecz [ll], our model is 
substantially faster and can handle shared or repeated 
items. Further work has to be developed in order to 
compare the proposed model with other existing ones. 
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