
Unsupervised Context-based Learning of Multiple Temporal Sequences

Guilherme de A. Barreto Aluizio F. R. Araiijo
Departamento de Engenharia Elbtrica - Universidade de S5o Paul0

AV. Dr. Carlos Botelho, 1465

{ gbarreto, aluizioa} @sel.eesc.sc.usp.br
13560-250 S ~ O Carlos, SPY Bmil

Abstract
A seyorganizing neural network is proposed to handle
multiple temporal sequences with states in common. The
proposed network combines context-based competitive
learning with time-delayed Hebbian learning to encode
spatial features and temporal order of sequence items. A
responsibility jirnction to avoid catastrophic forgetting,
and a redundancy mechanism to provide noise and fault-
tolerance increase the reliability of the model. States
shared by diflerent sequences are encoded by a single
neuron, whereas context information indicates the correct
sequence to be recalled in the case of ambiguiq.
Simulations with trajectories of a P U M 560 robot are
performed to test the network accuracy, robustness to
noise and tolerance to faults.

1. Introduction

Many engineering and cognitive tasks require ability to
process spatio-temporal sequences. This sequential
patterns usually takes the form of a finite, discrete set of
items appearing successively in time. Such sequences
carry information on the static nature of an individual item,
and on the temporal order of their items [13.

A number of memory models for sequential patterns have
been proposed in the context of verbal learning [2], but
they have similar counterparts in the domain of neural
models for robot control. Basically, three paradigms have
been applied successllly: associative chaining [3],
positional coding [4], and chunking [SI. In the associative
chaining hypothesis, each item in a sequence is associated
with its precedent items in either a unidirectional or bi-
directional fashion. Thus, each item is cued by the
preceding ones. In the positional coding hypothesis, each
list item is associated with a positional code referring to its
location in the sequence. Such an information is used
during recall to reconstruct the sequence in the correct
order. The chunking hypothesis refers to compressed,
categorical, or unitized representations of sequence items

which behave fimctionally as a single item. As mentioned,
these paradigms have been used within the framework of
artificial neural networks (ANN). For instance, recurrent
networks [6], [7]; Hopfield-like associative memory [8],
[9]; and unsupervised learning models [lo], [l l] follow the
principle of associative chaining.

Regarding the application of unsupervised models to robot
control, Althbfer & Bugmann [12] proposed a two-stage
neural network model for planning, learning and retrieval
of robot arm movements based on the associative chaining
paradigm. The first stage implements a grid-like neural
network for path planning, and the second stage learns the
trajectories, generated by the first one, through RJ3F nodes
sequentially connected. This model produces smooth
movements and accurate final positions for trajectories
with no repeated points. Bugmann et al. [13] extended the
former model by combining associative chaining and
positional coding. This model aims at learning the
sequence of positions forming the trajectory of an
autonomous wheelchair, and operates by producing the
next position for the wheelchair. Positional information is
used to disambiguate recall of repeated points. This
network is able to handle multiple trajectories provided
that a shared point does not occur in the same position.
Denham & McCabe [14] uses the chunking paradigm to
control an autonomous mobile robot that uses sequences of
pairs (sensory stimuli, motor actions) learned over time, to
build an internal model of the world in which the robot
navigates. The network in Wang & Arbib [151 is suggested
as the main controller. However, the proposed system
demands additional work to be formalized and
implemented in a real-world robot.

As the majority of the existing unsupervised models for
sequence processing does not directly address the issue of
multiple temporal sequence learning (see Wang and
Yuwono [16] as an exception), the aim of this work is to
develop an unsupervised neural network, based on
chaining hypothesis, to learn and recall temporal patterns.
The remaining of the paper is organized as follows. In
Section 2, we present the neural algorithm. In Setion 3,

0-7803-5529-6/99/$10.00 01999 IEEE 1102

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

we evaluate the model through simulations. In Section 4,
we conclude the paper and give possible directions for
fiuther work.

2. The Proposed Model

Two characteristics are essential for autonomous learning
and reproduction of sequential patterns. For purpose of
learning, a mechanism must be implemented to extract and
store temporal relationship between patterns. For purpose
of recall, the network dynamics must be defined to
reproduce the previously observed sequence.

Sequences are presented to the network item-by-item.
Then, the neural model should store each item individually
as well as the temporal order of such input items. In order
to use memory resources efficiently, each repetition of a
state, called shared stute, is stored in a single neuron.
During recall, the network has to produce the successor of
each input item. The network architecture is presented in
Figure 1.

4 4 4 . . A

Sensor v-r context vector

Figure 1. The topology of the proposed network. Only some
connections are shown.

Each input pattern, v(t) E Pq, is comprised of two parts.
The sensor vector, s(t) E IF, corresponds to an observed
sequence item at time t. In this work, it takes the values of
the spatial position of the end-effector, joint angles and
applied torques. The context vector, c(t) E P, is used to
handle ambiguities during recall.

Associated with the j-th output neuron there is a
feedforward weight vector, wj(t) = { w ~ (t) , w ~ (i) } , j = 1,
..., n, responsible for storing each one of the sequence

items ~(2) . Such a vector is divided into a sensor, ws (t) ,
and a context, w;(t) , part that encodes s(t) and c(t)

respectively. Also, there is a lateral weight vector, m,{t),
which should encode the temporal order of the sequence
by connecting consecutive items. Finally, it is defined an
activation state, q<t) E R, that identifies the neuron whose
weight vector w f (t) is the most similar to the current

sensor vector s(t), and an output value, ~ { t) E R, to
indicate the neuron whose weight vector contains the next
item in the stored sequence. The learning processes are
described next.

Context-based competitive learning: After the
presentation of the input vector v(t)={ s(t), c(t)}, the output
neurons “compete” for encoding it. The competition
process uses Euclidean distances as similarity measures.
Hence, we define a sensor distance, DJ(t) E R, and a

confext distance, DJ (t) E R, for each output unitj:

where I(x 1l2=x? +...+xi+q. The distance Dj”(f) is used
to find the winners of the current competition, while

DJ (t) is used to solve ambiguities during recall.

It is worth remembering that, to guarantee accurate recall
of all states of a given sequence, the network should avoid
the situation in which a neuron wins the competition more
than once. This can be accomplished by introducing a
function R,<t), called responsibility function, that indicates
whether a neuron is already responsible for encoding a
given sequence item. If R,{t) > 0, neuronj is excluded from
subsequent competitions for sequence components. If R#)
= 0, neuron j is allowed to compete.

‘

In sequel, we define the following function:

where DOS is an acronym for degree of similarity. This
constant specifies a criterion to allow neurons to be chosen
winners even if they have already won before. This
mechanism contemplates situations in which repeated or
shared states occur, allowing them to be encoded by the
same neuron.

Finally, the output neurons are ranked, as follows:

where p&), i = l,..., n, is the index of the i-th closest
output neuron to s(t). We choose K neurons, p(t) = (pl(t),
p&), ...,PA t)), 0 < K << n, as winners of the current
competition. They will represent the current input vector
v(t). During learning, the redundancy degree K is often set

1103

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

to a value greater than one in order to guarantee tolerance
to faults and distortions in the input sequence caused by
noise. During recall, it is ahvqys set to K=l.

The corresponding activation values decay linearly from a
maximum value a,, E R, for pLl(f) , to a minimum ami, E
R, for pdf), according to the following equation:

where a,, and ami, are user-defined constants. The
responsibility function R'{f) is updated every time a new
activation pattern, a(t) = (q(t),..., a,<t))', is computed

R j (f +1)= R j (f)+ pa j (f) j = l,...,n (5)

where p >> 0 is the exclusion constant.

The competitive weights are adjusted according to the
following equation:

w (t + 1) = w (t) +qui (t)[v(t) - w (t)] (6)

where 0 < q S 1 is the learning rate. Only neurons with
activation different of zero are allowed to learn. If we
adopt q G 1, an input vector item v(f) is learned very
quickly, allowing an entire sequence to be learned in only
one pass of its components.

Time-delayed Hebbian Learning: To encode transitions
between consecutive states, we employ a lateral coupling
structure. Such unidirectional connections are adjusted
when the winners of each competition are determined,
indicating the correct temporal order of appearance of the
sequence items. The learning rule is [171:

mjl(t+l)= mj,(t)+aaj(t)a,(t-l) j , l=1, ..., n (7)

where a > 0 is the lateral learning rate. Equation (7)
updates the weights from winners at time f-1 to winners at
time t. In other words, state transitions are learned by the
lateral connections between consecutive winners. During
recall, the resulting lateral coupling structure takes the
network to respond with the neurons that encoded the
successor of the current input vector.

Kopecz [ll], Montague & Sejnowski [18], Girolami &
Fyfe [19], and Wallis [20] have also used time-delayed
Hebbian rules to model temporal aspects of sequences.

The network output values are calculated as follows:

where the weight vector of the neuron with the largest
value for y,{t) contains the next configuration for the robot
arm. This weight vector is sent to the robot controllers.

The role of the first factor on the right hand side of
Equation (8) is to solve ambiguities. If a shared state has
been reached, there are various possibilities for the next
state. This uncertainty is resolved by that factor, because
the correct neuron is the one with the smallest context

distance DJ (f) which yields larger values for y,{f).

3. Simulations and Discussions

The proposed model is applied as part of a larger control
system for trajectory tracking of a 6-DOF PUMA 560
robot. This task aims at converting a description of a
desired motion into a trajectory defined as a time sequence
of intermediate configurations between an origin and a
destination [21]. The desired motion is that of an industrial
robot arm consisting of joints driven by individual
actuators. The robot is required to follow a prescribed path,
so that its controllers must coordinate the movements of
the robot individual joints to achieve the desired overall
movement along the path. In this sense, our model acts as a
trajectory planner, outputting a sequence of arm
configurations that forms the input to the arm control
system.

The trajectories in this work have one state in common,
and they are grouped into 3 types according to the position
of the shared states in the sequence. Trajectories sharing
the same origin but with different destinations are called
1-m (one-to-many) trajectories. This group of trajectories,
considered in the reverse temporal order, are called m-1
(many-to-one), since now they share the same destination.
Trajectories that share intermediate states (other than the
origin and destination ones) are called of type mm-wc
(many-to-many with crossing). These trajectories have
already been used to evaluate supervised neural models for
robot control [22], [23].

The fundamental problem in processing trajectories with
repeated or shared items is to determine which trajectory
the arm should follow when it reaches such a bifurcation
point. In this paper, trajectories were constructed with the
toolbox robotics of Matlab [24], and to visualize the
learned trajectories, a robot simulator was developed.

1104

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

The network parameters and constants for all simulations
are the following: p = 15, q = 3, n = 250, DOS = lo4,
U- = 1, % = 0.98, p = 100, q = 1, a = 0.8. The weights
and functions are initialized only in the beginning of
training: ?do) = rand[O, 13, mj,(0) = 0, and R,(O) = 0, for
all i, j and I: The activation and output values are
initialized every time a new sequence item is observed:
u,{O) = x{O) = 0, for all j. The context c(r) is always set to
the spatial position of the destination, (xf, yf, z,), of the
trajectory being processed and remain unchanged for each
trajectory. For the present simulations, this information is
sufficient to solve any ambiguity. The network is evaluated
in terms of mean square error (MSE) values obtained from
the comparison between the desired and the retrieved
spatial positions of the arm.

For the first test, three 1-m trajectories (with 11 states) are
presented to the network sequentially, one after the other.
These trajectories share a point at spatial position
(0.60,0.10,0.00). Recall is performed to verify if the
sequences were encoded accurately and in the correct
order. The results in Figure 2 illustrate a correct recall
procedure. Both, learning and recall, are perfoxmed using
noise-free inputs. Under these conditions, the MSE errors
during recall are very small, of the order of lo’.

Figure 2. Desired ‘0’ and retrieved I.’ spatial trajectories with
same starting point (0.6,O.l. 0.0).

Figure 3 allows the visualization in a simulated robot
configuration space of one of the retrieved trajectories (I-
G1) oftype 1-m.

Figure 3. Visualization of a retrieved trajectory with 11 states.

In the next test, for a given origin and destination, we
evaluate the effect of varying the number of intermediate
states on the network performance under noisy conditions.
For this, we fixed the redundancy degree K and used
trajectories of type m-1 with 11, 21, 41, and 81 points
respectively. A typical result for K=3 is shown in Figure 4.
For the sake of clarity, only the results for trajectories with
1 1 and 81 points are presented.

025

oa -
r n ’
9 0.15 -
w ,
3 0.10 -

o m -
O P O r

0.00 0.02 0.04 0.06 0.08 0.to

valiance

Figure 4. Effect of varying the number of states of a given
trajectory, for a fixed K, on the network recall performance
under the addition of Gaussian noise N(0.d) to the input

From Figure 4, one can conclude that, for a fixed K, a
higher number of intermediate points reduces the MSE
levels. The results for 21 and 41-point trajectories (not
shown) also confirm this assertive.

The last simulation evaluates the effect of varying the
redundancy degree K, for a fixed number of intermediate
states, on the network performance under noisy conditions.
For this, we used trajectories of type mm-wc with 81
points, and varied K from 1 to 5. A typical result is shown
in Figure 5. For the sake of clarity, only the results for K=3
and 4 are presented.

025 L

! O * l 5 1 00
.. : :_..

. . .: I .. ”1 0.00 I
I n . t . * . n . # . , ,

Mrianca
0.W 0.02 0.04 Om 0.08 0.10

Figure 5. Effect of varying the redundancy degree K, for a
fixed number of states, of a given trajectory, on the network
recall performance under the addition of Gaussian noise
N(0,d) to the input.

1105

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

From Figure 5 , one can infer that there is an upper bound
for values of K, since on average K = 3 gives better results
for MSE that K=4. The results for K = 5 (not shown) are
poorer than that for K I 4. This is an interesting result
because memory requirements can be roughly estimated by
analyzing the values of K for each stored sequence.

4. Conclusions

In the proposed model, multiple sequences are stored in a
simple network in such a way that the patterns of activity
for items representation encodes both the individual items
that have occurred and the temporal order in which they
have occurred.

Our model behave similarly to the Grossberg's outstar
avalanche model [lo], in the sense that our method treats
both simple and complex sequences in the same way, and a
complex sequence can be recalled as easily as a simple
one. The basic difference is that outstar avalanche stores
repeated or shared items as different copies, while our
model stores them as a unique copy which can still
correctly recall the sequence due to context information.
As a result, our model yields an efficient use of memory
space. Also, the proposed model is more reliable because,
being redundant, it recalls stored sequences even if
neurons or their connections are damaged. The problem of
udhoc wiring for temporal coupling, existing, for example,
in the outstar avalanche, Bugmann & AlthBfer and
Bugmann et al. models has been avoided here. Compared
with the model proposed by Kopecz [ll], our model is
substantially faster and can handle shared or repeated
items. Further work has to be developed in order to
compare the proposed model with other existing ones.

Acknowledgments

The authors thanks FAPESP for its financial support.

References

[l] Ray, S.R & Kargupta, H. (1996). A temporal sequence
processor based on the biological reactiondiffusion process.
Complex Systems, Vol. 9, No. 4,305-327.

[2] Kahana, M. J. & Jacobs, J. (1998). Inter-response times in
serial recall: effects of intra-serial repetition. Submitted to
Journal of Ekp. Psyc.: Learning, Memov, and Cognition.

[3] Crowder, R G. (1968). Intraserial repetition effects in
immediate memory. Journal of Verbal Learning and Verbal
Behavior, Vol. 7,446-451.

[4] Young, R. K. (1968). Serial Learning. In: Verbal Behavior
and General Behavior meory, T . R Dixon and D. L. Horton
@ds.), pp. 122-148, N J Prentice Hall.

[5] Miller, G. A. (1956). The magical number seven, plus or
minus two: some limits on our capacity for processing
information. Pwchological Review, vol. 63,81-97.

[6] Elman, J. L. (1990). Finding structure in time. Cognitive
Science, vol. 14, 179-2 1 1.

[7] Jordan, M. I. (1986). Attractor dynamics and parallelism in a
connectionist sequential machine, Proc. of the 8th Annual
Con$ of the Cognitive Sci. Society, Amherst, MA, 531-546.

[8] Sompolinsky, H. & Kanter, I. (1986). Temporal association in
asymmetric neural networks. Phys. Rev. tett., vol. 57,2861-
2864.

[9] Guyon, I., Personnaz, L., Nadal, J. & D r e w , G. (1988).
Storage and retrieval of complex sequences in neural
networks. Physical Review A, vol. 38, no. 12,6365-6372.

[lo] Grossberg, S. (1969). Some networks that can learn,
remember, and reproduce any number of complicated space-
time patterns, I. JoumalofMath. andMech., vol. 19,53-91.

[ll] Kopecz, K. (1995). Unsupervised learning of sequences on
maps with lateral connectivity. Proc. of the Znternational
Con$ on Arti$cial Neural Networks, vol. 2,431-436.

[121 Althijfer, K. & Bugmann, G. (1 995). Planning and learning
goal-directed sequences of robot arm movements. In:
Fogelman-Soulii F. & Gallinari (Ed.), Proceedings of the
Zn fernational Conference on Artificial Neural Networks
(ZC4"95), Paris, France, vol. 1,449-454.

[13] Bugmann, G., Koay, K. L., Barlow, N., Phillips, M. &
Rodney, D. (1998). Stable encoding of robot trajectories
using normalized radial basis functions: Application to an
autonomous wheelchair. Proc. of the 29th International
Symp. on Robotics (ZSR'98),Birmingham, UK, 232-235.

[14] Denham, M. J. & McCabe, S. L. (1995). Robot control using
temporal sequence learning. Proceedings of the World
Congress on Neural Networks, vol. II, 346-348.

[15] Wang, D. L. & Arbib, M. A. (1993). Timing and chunking
in processing temporal order. ZEEE Transactions on Systems,
Man. Cybernetics, vol. 23,993-1009.

[16] Wang, D. L. & Yuwono, B. (1996). Incremental learning of
complex temporal patterns. ZEEE Transactions on Neural
Networks, vol. 7, no. 6, 1465-1481.

[17] Barreto, G. A. & Arafijo, A. F. R. (1999). Fast learning of
robot trajectories via unsupervised neural networks. Proc. of
the 14th ZFAC World Congress, Beijing, China.

[18] Montague, R & Sejnowski, T. J. (1994). The predictive
brain: temporal coincidence and temporal order in synaptic
learning mechanisms. Learning & Memory, no. 1,l-33.

[191 Girolami, M. & Fyfe, C. (1996). A temporal model of linear
anti-Hebbian leaming. NeuruZProc. Lett., no. 4,139-148.

[20] Wallis, G. (1998). Spatio-temporal influences at the neural
level of object recognition. Network: Computation in Neural
Systems, vol. 9,265-278.

[21] Thompson, S. E. & Patel, R V. (1987). Formulation ofjoint
trajectories for industrial robots using B-splines. ZEEE Trans.
on Industrial Electronics, vol. E-34, no. 2,192-200.

[22] Arafijo, A. F. R & Vieira, M. (1998). Associative memory
used for trajectory generation and inverse kinematics
problem. Proc. of the International Joint Conference on
Neural Networks, Anchorage, AK, USA, 2057-2052.

[23] M j o , A. F. R. & D'Arbo, H. (1998). Partially recurrent
neural network to perform trajectory planning, inverse
kinematics, inverse dynamics. Proc. of the ZEEE Znt. Con$ on
System, Man, and Cybernetics, San Diego, USA, 1784- 1789.

[24] Corke, P. I. (1996). A robtics toolbox for MATLAB. ZEEE
Robotics andAutomation Magazine, vol. 3, no. 1,24-32.

1106

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO CEARA. Downloaded on December 20,2022 at 15:08:50 UTC from IEEE Xplore. Restrictions apply.

