Use este identificador para citar ou linkar para este item: http://repositorio.ufc.br/handle/riufc/70679
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorSouza Júnior, Amauri Holanda de-
dc.contributor.authorCorona, Francesco-
dc.contributor.authorMiché, Yoan-
dc.contributor.authorLendasse, Amaury-
dc.contributor.authorBarreto, Guilherme de Alencar-
dc.contributor.authorSimula, Olli-
dc.date.accessioned2023-02-09T14:03:30Z-
dc.date.available2023-02-09T14:03:30Z-
dc.date.issued2013-
dc.identifier.citationBARRETO, G. A. et al. Minimal learning machine: a new distance-based method for supervised learning. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 12., 2013, Puerto de la Cruz. Anais... Puerto de la Cruz, 2013. p. 408-416.pt_BR
dc.identifier.urihttp://www.repositorio.ufc.br/handle/riufc/70679-
dc.description.abstractIn this work, a novel supervised learning method, the Minimal Learning Machine (MLM), is proposed. Learning a MLM consists in reconstructing the mapping existing between input and output distance matrices and then estimating the response from the geometrical configuration of the output points. Given its general formulation, the Minimal Learning Machine is inherently capable to operate on nonlinear regression problems as well as on multidimensional response spaces. In addition, an intuitive extension of the MLM is proposed to deal with classification problems. On the basis of our experiments, the Minimal Learning Machine is able to achieve accuracies that are comparable to many de facto standard methods for regression and it offers a computationally valid alternative to such approaches.pt_BR
dc.language.isoenpt_BR
dc.publisherInternational Work-Conference on Artificial Neural Networkspt_BR
dc.titleMinimal learning machine: a new distance-based method for supervised learningpt_BR
dc.typeArtigo de Eventopt_BR
Aparece nas coleções:DETE - Trabalhos apresentados em eventos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
2013_eve_gabarreto.pdf1,58 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.