Use este identificador para citar ou linkar para este item:
http://repositorio.ufc.br/handle/riufc/70679
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.contributor.author | Souza Júnior, Amauri Holanda de | - |
dc.contributor.author | Corona, Francesco | - |
dc.contributor.author | Miché, Yoan | - |
dc.contributor.author | Lendasse, Amaury | - |
dc.contributor.author | Barreto, Guilherme de Alencar | - |
dc.contributor.author | Simula, Olli | - |
dc.date.accessioned | 2023-02-09T14:03:30Z | - |
dc.date.available | 2023-02-09T14:03:30Z | - |
dc.date.issued | 2013 | - |
dc.identifier.citation | BARRETO, G. A. et al. Minimal learning machine: a new distance-based method for supervised learning. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 12., 2013, Puerto de la Cruz. Anais... Puerto de la Cruz, 2013. p. 408-416. | pt_BR |
dc.identifier.uri | http://www.repositorio.ufc.br/handle/riufc/70679 | - |
dc.description.abstract | In this work, a novel supervised learning method, the Minimal Learning Machine (MLM), is proposed. Learning a MLM consists in reconstructing the mapping existing between input and output distance matrices and then estimating the response from the geometrical configuration of the output points. Given its general formulation, the Minimal Learning Machine is inherently capable to operate on nonlinear regression problems as well as on multidimensional response spaces. In addition, an intuitive extension of the MLM is proposed to deal with classification problems. On the basis of our experiments, the Minimal Learning Machine is able to achieve accuracies that are comparable to many de facto standard methods for regression and it offers a computationally valid alternative to such approaches. | pt_BR |
dc.language.iso | en | pt_BR |
dc.publisher | International Work-Conference on Artificial Neural Networks | pt_BR |
dc.title | Minimal learning machine: a new distance-based method for supervised learning | pt_BR |
dc.type | Artigo de Evento | pt_BR |
Aparece nas coleções: | DETE - Trabalhos apresentados em eventos |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
2013_eve_gabarreto.pdf | 1,58 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.