Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ufc.br/handle/riufc/70679
Tipo: Artigo de Evento
Título : Minimal learning machine: a new distance-based method for supervised learning
Autor : Souza Júnior, Amauri Holanda de
Corona, Francesco
Miché, Yoan
Lendasse, Amaury
Barreto, Guilherme de Alencar
Simula, Olli
Fecha de publicación : 2013
Editorial : International Work-Conference on Artificial Neural Networks
Citación : BARRETO, G. A. et al. Minimal learning machine: a new distance-based method for supervised learning. In: INTERNATIONAL WORK-CONFERENCE ON ARTIFICIAL NEURAL NETWORKS, 12., 2013, Puerto de la Cruz. Anais... Puerto de la Cruz, 2013. p. 408-416.
Abstract: In this work, a novel supervised learning method, the Minimal Learning Machine (MLM), is proposed. Learning a MLM consists in reconstructing the mapping existing between input and output distance matrices and then estimating the response from the geometrical configuration of the output points. Given its general formulation, the Minimal Learning Machine is inherently capable to operate on nonlinear regression problems as well as on multidimensional response spaces. In addition, an intuitive extension of the MLM is proposed to deal with classification problems. On the basis of our experiments, the Minimal Learning Machine is able to achieve accuracies that are comparable to many de facto standard methods for regression and it offers a computationally valid alternative to such approaches.
URI : http://www.repositorio.ufc.br/handle/riufc/70679
Aparece en las colecciones: DETE - Trabalhos apresentados em eventos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2013_eve_gabarreto.pdf1,58 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.