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Abstract. In this work, a novel supervised learning method, the Min-
imal Learning Machine (MLM), is proposed. Learning a MLM consists
in reconstructing the mapping existing between input and output dis-
tance matrices and then estimating the response from the geometrical
configuration of the output points. Given its general formulation, the
Minimal Learning Machine is inherently capable to operate on nonlinear
regression problems as well as on multidimensional response spaces. In
addition, an intuitive extension of the MLM is proposed to deal with
classification problems. On the basis of our experiments, the Minimal
Learning Machine is able to achieve accuracies that are comparable to
many de facto standard methods for regression and it offers a computa-
tionally valid alternative to such approaches.

1 Introduction

In this paper, we present a new supervised method, the Minimal Learning Ma-
chine (MLM). The basic idea behind the Minimal Learning Machine is the exis-
tence of a mapping between the geometric configurations of points in the input
and output space. On the basis of our experiments, such a mapping can be ac-
curately reconstructed by learning a multi-response linear regression model be-
tween distance matrices. Under these conditions, for an input point with known
configuration in the input space, its corresponding configuration in the output
space can be easily estimated after learning a simple linear model between in-
put and output distance matrices. The resulting estimate is then used to locate
the output point and thus provide an estimate for the response. In its basic
formulation, the MLM closely resembles a classical unsupervised dimensionality
reduction method, Multidimensional Scaling (MDS, [1]), and more specifically
its variant known as Landmark MDS [2], the main difference being that the
output configuration in MLM is known beforehand.
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The remainder of the paper is organized as follows. In Section 2, the Minimal
Learning Machine is presented; the MLM is formulated (Section 2.1), its proper-
ties discussed (Section 2.2) and two illustrative examples presented (Section 2.3)
along with a simple extension of MLM that renders it suitable also for classifi-
cation tasks. In Section 3, a thorough experimental assessment of the Minimal
Learning Machine is conducted to evaluate its performance and to compare it
with state-of-the-art approaches in regression.

2 Minimal Learning Machine

We are given a set of N input points X = {xi}Ni=1, with xi ∈ R
D, and the set of

their corresponding outputs Y = {yi}
N
i=1, with yi ∈ R

S . Assuming the existence
of a continuous mapping f : X → Y between the input and the output space,
we want to estimate it from data using a multi-response model

Y = f(X) +R,

where the columns of the matrix X = [x1, . . . ,xD] correspond to the input vari-
ables and the rows to the observations, analogously the columns of the matrix
Y = [y1, . . . ,yS ] correspond to the output variables and the rows to the obser-
vations. The N × S matrix R denotes the output residual vectors.

2.1 Formulation

Provided that the input space X is well sampled and f is smooth, we expect that
for each pair of input points (xi,xj) and for every εy > 0, there exists a εx > 0
such that for d(xi,xj) < εx we have that δ(f(xi)), δ(f(xj)) < εy, where d(·, ·)
and δ(·, ·) are distance functions in X and Y, respectively. Under this condition,
we are interested in reconstructing the mapping g : DX → DY between input
distance matrices Dx and the corresponding output distance matrices ∆y. The
availability of the geometrical configurations of the points in the input and in
the output space is then used to estimate the response y of a query input x.

Distance Regression. For a selection of reference input points R = {mk}Kk=1

with R ⊆ X and corresponding outputs T = {tk}Kk=1 with T ⊆ Y , we define
Dx ∈ R

N×K in such a way that its kth column contains the distances d(xi,mk)
between the i = 1, . . . , N input points xi and the kth reference point mk. Analo-
gously, we define∆y ∈ R

N×K in a way that its kth column contains the distances
δ(yi, tk) between the output points yi and the output tk of the kth reference
point. The associated multi-response regression model for estimating g is thus

∆y = g(Dx) +E, (1)

where the columns of the matrix Dx correspond to the K input vectors and the
columns of the matrix ∆y correspond to the K response vectors. As usual, the
K columns of the N ×K matrix E correspond to the residuals.
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We assume that the mapping g between input and output distances is linear,
thus the multi-response regression model between distance matrices becomes

∆y = DxB+E, (2)

where the regression matrix B ∈ R
K×K has to be solved from data. Under the

normal conditions where the number of equations in (2) is larger to the number
of unknowns, the problem is overdetermined and, usually, with no solution. This
corresponds to the case where the number of selected reference points is smaller
than the number of points available for solving the model (i.e., K < N) and we
have to rely on the approximate solution provided by the least squares estimate:

B̂ = (D′
xDx)

−1D′
x∆y. (3)

On the other hand, if in (2) the number of equations equals the number of un-
knowns (i.e., all the learning points are also selected as reference points and
K = N), the problem is uniquely determined and, usually, with a single solution

B̂ = (Dx)
−1∆y. Clearly less interesting is the case where in (2) the number

of equations is smaller than then number of unknowns (i.e., for K > N , cor-
responding to the situation where, after selecting the reference points, only a
smaller number of learning points is used), for it leads to an underdetermined
problem with, usually, infinitely many solutions.

Given the possibility for B to be either uniquely solvable or estimated (Equa-
tion 3), for a test point x ∈ R

D whose distances from the K reference input
points {mk}Kk=1 are collected in the vector d(x, R) = [d(x,m1), . . . , d(x,mK)],
the corresponding distances between its unknown output y and the known out-
puts of the reference points, the vector δ(y, T ) = [δ(y, t1), . . . , δ(y, tK)], are

δ̂(y, T ) = d(x, R)B̂. (4)

The vector δ̂(y, T ) provides an estimate of the geometrical configuration in DY

of y with respect to all the reference points {tk}Kk=1 and thus can be used to
estimate its location in Y.

Output Estimation. Estimating y is equivalent to solve the overdetermined
set of nonlinear equations corresponding to the K (S + 1)-dimensional hyper-
spheres centered in tk and all passing through y, that is with a radius equal to
δ̂(y, tk):

(y − tk)
′(y − tk) = δ̂2(y, tk), ∀k = 1, . . . ,K. (5)

The problem in Equation 5 can be formulated as an optimization problem where
an estimate ŷ can be obtained by the following minimization:

ŷ = argmin
y

K
∑

k=1

(

(y − tk)
′(y − tk)− δ̂2(y, tk)

)2

. (6)

The objective has a minimum equal to 0 that can be achieved if and only if y
is the solution of Equation 5. If it exists, such a solution is global and unique.
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Due to the uncertainty introduced by the estimates δ̂(y, tk), an optimal solu-
tion to Equation 6 can still be achieved using gradient descent methods or the
Levenberg-Marquardt algorithm. This method is used in our experiments.

2.2 Parameters and Computational Complexity

On the basis of the aforementioned overview, the number of reference points K
is virtually the only hyper-parameter that the user needs to select in order to
optimize a Minimal Learning Machine. As always, a selection based on standard
resampling methods for cross-validation could be adopted for the task and thus
optimize the MLM against over-fitting. Two figures of merit can be used for
selecting K; one for the distance regression step and another one for the output
estimation. In this work, we use the Average Mean Squared Error for the output
distances (AMSE(δ) = 1/K

∑K

k=1(1/N
∑N

i=1 (δ(yi, tk)− δ̂(yi, tk))
2)) and the

Mean Squared Error for the responses (MSE(y) = 1/N
∑N

i=1 (yi − ŷi)
2).

The computation for learning a MLM can be decomposed into two steps: i)
calculations of the pairwise distance matrices in the output and input space and
ii) calculation of the least-square solution for the multi-response linear regression
problem on distance matrices (Equation 3). The first procedure takes Θ(KN)
time. The computational cost of the second step is driven by the calculation
of the Moore-Penrose pseudo-inverse matrix. One of the most used method for
the task is the Singular Value Decomposition, which runs in Θ(K2N) time. The
time complexity of the overall learning phase is thus driven by the computation
of the Moore-Penrose matrix and then it is given by Θ(K2N). However, because
the optimal number of reference points might not grow at the same rate of the
number of learning points, then such complexity can be reduced to O(N) if one
considers K = O(1), or O(N2) if K = O(N0.5). In addition, large pairwise
distance matrices could be approximated using Nyström methods and matrix
multiplication operations could be parallelized using multicore architectures.

2.3 Two Illustrative Examples

In this section, we illustrate the effectiveness of the Minimal Learning Machine
using two synthetic problems. The first one is related to nonlinear regression (the
smoothed parity function) and the second one (the Tai Chi) is used to introduce
an intuitive extension that allows the MLM to deal with classification problems.

The Smoothed Parity. To illustrate the behavior of the Minimal Learning
Machine for regression, we generated 213 bidimensional input points uniformly
distributed in the unit-square, x ∈ [0, 1]2, and built the response using the model
y = f(x) + ε with f = sin(2πx1) sin(2πx2) and ε ∼ N (0, 0.12), Figure 1(a).

We analyzed the performance of the MLM for N learning points ranging from
21 to 212 and K reference points such that always K ≤ N . A common set
of Nv = 212 independent points is used for validating the MLM in terms of its
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Fig. 1. A regression example: The smoothed parity function

hyper-parameter K. Two figures of merit are considered for selecting K, the
AMSE(δ) for the output distances and the MSE(y) for the response.

As expected, for each size of the learning set it is possible to select an optimal
number of reference points that minimizes the validation error. Figure 1(b) and
1(c) depicts such optimal models with red dots. In these two figures, the circle is
used to depict the best model overall (N = 212 and K = 28, for both AMSE(δ)
and MSE(y)). Figure 1(d) illustrates the validation results when estimating the
response with such a model. Interestingly, the MSE achieved by this MLM is
0.011, which tends to the variance of the noise (0.010) and thus also to the
smallest MSE that any regression model can achieve without over-fitting.

The Tai Chi. Since the Minimal Learning Machine is able to deal with multidi-
mensional response spaces, it can be easily extended to multi-class classification
problems by representing the classes through binary output encoding schemes.

For compactness, here we illustrate the behavior of the MLM for binary clas-
sification. We generated 213 bidimensional input points uniformly distributed in
the Tai Chi symbol and, after assigning the class labels to the Yin an Yang areas,
we purposely mislabeled 10% of the observations, Figure 2(a). A binary output
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Fig. 2. A classification example: The Tai Chi

encoding that assigns yi = 0 to the points in the class ‘Yin’ and yi = 1 to those
in the class ‘Yang’ is used. The output distances are calculated accordingly.

The performance of the MLM for classification with N and K ranging from 21

to 212 and K ≤ N is presented. For validation purposes, a set of 212 observations
is used. The results in terms of AMSE(δ) and MSE(y) are reported in Figure
2(b) and 2(c), respectively. The red dots denote the best model per number of
learning points and the circle depicts the best model overall. Figure 2(d) shows
the estimated classes in validation using the best model; the accuracy is 88%.

3 Experiments

In this section, we present results obtained with six real-world regression datasets
used for benchmarking purposes (UCIRepository:www.ics.uci.edu/∼mlearn/).
The datasets have been chosen to object heterogeneity in the number of samples
and inputs: 1) Breast Cancer (32 inputs, 194 samples); 2) Boston Housing (13 in-
puts, 506 samples); 3) Servo (4 inputs, 167 samples); 4) Abalone (8 inputs, 4177
samples); 5) Stocks (9 inputs, 950 samples); and 6)Auto Price (15 inputs, 159 sam-
ples). For each problem, ten different random permutations of the whole dataset
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are taken, two thirds are used for learning and the rest for testing. The learning
sets are normalized to have zero mean and unit variance, and the test sets are nor-
malized using the corresponding mean and variance from the learning set.

The Minimal Learning Machine is compared to five other methods: The Ex-
treme Learning Machine (ELM, [3]), the Optimally Pruned ELM (OP-ELM, [4]),
the Support Vector Machine for Regression (SVM, [5]), Gaussian Processes (GP,
[6]) and the MultiLayer Perceptron (MLP, [7]).

The hyper-parameters for the SVM and the MLP are selected using 10-fold
cross-validation. The SVM is learned using the SVM toolbox [8] with default
settings for the hyper-parameters and grid search, with a radial basis kernel.
The MLP is optimized using Levenberg-Marquardt and validated on a range of
hidden units from 1 to 20. The learning of GP is based on the default settings
in the Matlab Toolbox [6]. The ELM and OP-ELM have been validated using
sigmoid, gaussian and linear kernels, and a maximum number of 100 hidden
units. The only hyper-parameter of the Minimal Learning Machine (the number
of reference points) has also been selected through 10-fold cross-validation, for a
K ranging from 5% to 100% (with a step size of 5%) of the learning samples.

Table 1. Test results: MSE, standard deviations (below the MSE) and t-test results
(� for accept, × for reject and p-values). The best performing models are in bold.

Datasets Models

MLM ELM OP-ELM SVM GP MLP

Breast Cancer 1.1e+3 7.7e+3 1.4e+3 1.2e+3 1.3e+3 1.5e+3
2.1e+2 2.0e+3 3.6e+2 7.2e+1 1.9e+2 4.4e+2

× (e-9) � (.955) � (.913) � (.109) × (.027)

Boston 2.3e+1 1.2e+2 1.9e+1 3.4e+1 1.1e+1 2.2e+1
1.2e+1 2.1e+1 2.9 3.1e+1 3.5 8.8

× (e-10) � (.374) � (.314) × (.008) � (.851)

Servo 4.9e−1 7.1 8.0e−1 6.9e−1 4.8e−1 6.0e−1
2.9e−1 5.5 3.3e−1 3.2e−1 3.5e−1 3.2e−1

× (.001) × (.037) � (.164) � (.961) � (.427)

Abalone 4.6 8.3 4.9 4.5 4.5 4.6
2.9e−1 7.5e−1 6.6e−1 2.7e−1 2.4e−1 5.0e−1

× (e-11) � (.353) � (.378) � (.206) � (.844)

Stocks 4.1e−1 3.4e+1 9.8e−1 5.1e−1 4.4e−1 8.8e−1
5.8e−2 9.35 1.1e−1 9.8e−2 5.0e−2 2.1e−1

× (e-9) × (e-11) × (.016) � (.329) × (e-6)

Auto Price 5.1e+7 7.9e+9 9.5e+7 9.8e+7 2.0e+7 1.0e+7

7.4e+7 7.2e+9 4.0e+6 8.4e+6 1.0e+7 3.9e+6
× (.003) � (.096) � (.346) � (.205) � (.103)

All the models are evaluated using the mean and standard deviation of the
resulting MSE over 10 independently drawn test sets. We also carried out a
statistical evaluation of the MLM performance against those achieved by the
other models using the two-sample t-test [9] with a significance level equal to
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5%. The null hypothesis is that the MSE distributions are independent random
samples from normal distributions with equal means and equal but unknown
variances, against the alternative that the means are not equal. On the basis
of the experimental results (Table 1), we can observe that the state-of-the-art
models seem to be able to achieve similar accuracies. In this regard, also the
MLM achieves performances that are comparable to such methods. The table
also shows that most of the models are equivalent for the Auto Price and Abalone
datasets, except of the ELM. The MLM is not among the best models only for
the Boston dataset where the GP is the most reliable option. In addition, the
most similar performances to MLM are those achieved by the SVM and GP
models, whose null hypotheses were accepted for five different datasets.

4 Conclusions

This work presents a novel method for supervised learning, the Minimal Learn-
ing Machine, MLM. Learning a MLM consists in reconstructing the mapping
existing between input and output distance matrices and then exploiting the ge-
ometrical arrangement of the output points for estimating the response. Based
on our experiments, a multiresponse linear regression model is capable to recon-
struct the mapping existing between the aforementioned distance matrices. The
MLM has only one hyper-parameter to be optimized. Given its general formu-
lation, the Minimal Learning Machine is also inherently capable to operate on
multidimensional responses and it can be extended to classification problems.

On a large number of real-world problems, the Minimal Learning Machine has
achieved accuracies that are comparable to what is obtained using state-of-the
art nonlinear regression methods. For compactness, we have reported the perfor-
mances on a selection of six datasets from the UCI Repository and comparisons
with five reference regression approaches. The results highlight the potentiality
of the MLM and we are currently further investigating its properties and the ties
with classical dimensionality reduction methods based on distances.
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